"Consider using [3jp] for the proof?"

https://arbital.com/p/5c9

by Eric Bruylant Jul 13 2016


The factorial function can be defined in a different way so that it is defined for all real numbers \(and in fact for complex numbers too\)\. We define x! as follows: x!\=Gamma(x+1), where Gamma is the gamma function: Gamma(x)\=int_0inftytx1etmathrmdt Why does this correspond to the factorial function as defined previously? We can prove by induction that for all positive integers x: prod_i\=1xi\=int_0inftytxetmathrmdt First, we verify for the case where x\=1\. Indeed: prod_i\=11i\=int_0inftyt1etmathrmdt 1\=1 Now we suppose that the equality holds for a given x: prod_i\=1xi\=int_0inftytxetmathrmdt and try to prove that it holds for x+1: prod_i\=1x+1i\=int_0inftytx+1etmathrmdt We'll start with the induction hypothesis, and manipulate until we get the equality for x+1\. prod_i\=1xi\=int_0inftytxetmathrmdt (x+1)prod_i\=1xi\=(x+1)int_0inftytxetmathrmdt prod_i\=1x+1i\=(x+1)int_0inftytxetmathrmdt \=0+int_0infty(x+1)txetmathrmdt \=left(tx+1et)right\]_0infty+int_0infty(x+1)txetmathrmdt \=left(tx+1et)right\]_0inftyint_0infty(x+1)tx(et)mathrmdt By the product rule of integration: \=int_0inftytx+1etmathrmdt This completes the proof by induction, and that's why we can define factorials in terms of the gamma function\.

Consider using Arbital hidden text for the proof?


Comments

Michael Cohen

I'm having difficulty figuring out how to do that.

Eric Bruylant

Added, feel free to alter.