{
localUrl: '../page/5c9.html',
arbitalUrl: 'https://arbital.com/p/5c9',
rawJsonUrl: '../raw/5c9.json',
likeableId: '0',
likeableType: 'page',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
pageId: '5c9',
edit: '1',
editSummary: '',
prevEdit: '0',
currentEdit: '1',
wasPublished: 'true',
type: 'comment',
title: '"Consider using [3jp] for the proof?"',
clickbait: '',
textLength: '35',
alias: '5c9',
externalUrl: '',
sortChildrenBy: 'recentFirst',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'EricBruylant',
editCreatedAt: '2016-07-13 21:30:19',
pageCreatorId: 'EricBruylant',
pageCreatedAt: '2016-07-13 21:30:19',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'true',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: 'The factorial function can be defined in a different way so that it is defined for all real numbers \\(and in fact for complex numbers too\\)\\. We define $x!$ as follows:\n$$x! = \\Gamma (x+1),$$\nwhere $\\Gamma $ is the gamma function:\n$$\\Gamma(x)=\\int_{0}^{\\infty}t^{x-1}e^{-t}\\mathrm{d} t$$\nWhy does this correspond to the factorial function as defined previously? We can prove by induction that for all positive integers $x$:\n$$\\prod_{i=1}^{x}i = \\int_{0}^{\\infty}t^{x}e^{-t}\\mathrm{d} t$$\nFirst, we verify for the case where $x=1$\\. Indeed:\n$$\\prod_{i=1}^{1}i = \\int_{0}^{\\infty}t^{1}e^{-t}\\mathrm{d} t$$\n$$1=1$$\nNow we suppose that the equality holds for a given $x$:\n$$\\prod_{i=1}^{x}i = \\int_{0}^{\\infty}t^{x}e^{-t}\\mathrm{d} t$$\nand try to prove that it holds for $x + 1$:\n$$\\prod_{i=1}^{x+1}i = \\int_{0}^{\\infty}t^{x+1}e^{-t}\\mathrm{d} t$$\nWe'll start with the induction hypothesis, and manipulate until we get the equality for $x+1$\\.\n$$\\prod_{i=1}^{x}i = \\int_{0}^{\\infty}t^{x}e^{-t}\\mathrm{d} t$$\n$$(x+1)\\prod_{i=1}^{x}i = (x+1)\\int_{0}^{\\infty}t^{x}e^{-t}\\mathrm{d} t$$\n$$\\prod_{i=1}^{x+1}i = (x+1)\\int_{0}^{\\infty}t^{x}e^{-t}\\mathrm{d} t$$\n$$= 0+\\int_{0}^{\\infty}(x+1)t^{x}e^{-t}\\mathrm{d} t$$\n$$= \\left (-t^{x+1}e^{-t}) \\right]_{0}^{\\infty}+\\int_{0}^{\\infty}(x+1)t^{x}e^{-t}\\mathrm{d} t$$\n$$= \\left (-t^{x+1}e^{-t}) \\right]_{0}^{\\infty}-\\int_{0}^{\\infty}(x+1)t^{x}(-e^{-t})\\mathrm{d} t$$\nBy the product rule of integration:\n$$=\\int_{0}^{\\infty}t^{x+1}e^{-t}\\mathrm{d} t$$\nThis completes the proof by induction, and that's why we can define factorials in terms of the gamma function\\.',
anchorText: 'We define $x!$ as follows:',
anchorOffset: '142',
mergedInto: '',
isDeleted: 'false',
viewCount: '226',
text: 'Consider using [3jp] for the proof?',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '2',
maintainerCount: '2',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'EricBruylant'
],
childIds: [],
parentIds: [
'factorial'
],
commentIds: [
'5dc',
'5df'
],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16648',
pageId: '5c9',
userId: 'EricBruylant',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-13 21:30:19',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}