{
localUrl: '../page/5f9.html',
arbitalUrl: 'https://arbital.com/p/5f9',
rawJsonUrl: '../raw/5f9.json',
likeableId: '0',
likeableType: 'page',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
pageId: '5f9',
edit: '1',
editSummary: '',
prevEdit: '0',
currentEdit: '1',
wasPublished: 'true',
type: 'comment',
title: '"I think that every metric space is dense in its..."',
clickbait: '',
textLength: '192',
alias: '5f9',
externalUrl: '',
sortChildrenBy: 'recentFirst',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'KevinClancy',
editCreatedAt: '2016-07-16 17:38:02',
pageCreatorId: 'KevinClancy',
pageCreatedAt: '2016-07-16 17:38:02',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'true',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: 'The rational numbers have a problem that makes them unsuitable for use in calculus — they have "gaps" in them\\. This may not be obvious or even make sense at first, because the rational numbers are dense in themselves — between any two rational numbers you can always find infinitely many other rational numbers\\. How could there be gaps in a set like that? $\\newcommand{\\rats}{\\mathbb{Q}} \\newcommand{\\Ql}{\\rats^\\le} \\newcommand{\\Qr}{\\rats^\\ge} \\newcommand{\\Qls}{\\rats^<} \\newcommand{\\Qrs}{\\rats^>}$\n$\\newcommand{\\set}[1]{\\left\\{#1\\right\\}} \\newcommand{\\sothat}{\\ |\\ }$ ',
anchorText: 'rational numbers are dense in themselves',
anchorOffset: '177',
mergedInto: '',
isDeleted: 'false',
viewCount: '100',
text: 'I think that every metric space is dense in itself. If X is a metric space, then a set E is dense in X whenever every element of X is either a limit point of E *or an element of E* (or both). ',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'KevinClancy'
],
childIds: [],
parentIds: [
'real_number_as_dedekind_cut'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16881',
pageId: '5f9',
userId: 'KevinClancy',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-16 17:38:02',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}