{ localUrl: '../page/real_number_as_dedekind_cut.html', arbitalUrl: 'https://arbital.com/p/real_number_as_dedekind_cut', rawJsonUrl: '../raw/50g.json', likeableId: '2948', likeableType: 'page', myLikeValue: '0', likeCount: '2', dislikeCount: '0', likeScore: '2', individualLikes: [ 'EricBruylant', 'JaimeSevillaMolina' ], pageId: 'real_number_as_dedekind_cut', edit: '16', editSummary: 'Any topological space is dense in itself.', prevEdit: '15', currentEdit: '16', wasPublished: 'true', type: 'wiki', title: 'Real number (as Dedekind cut)', clickbait: 'A way to construct the real numbers that follows the intuition of filling in the gaps.', textLength: '5727', alias: 'real_number_as_dedekind_cut', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'KevinClancy', editCreatedAt: '2016-07-23 19:41:20', pageCreatorId: 'JoeZeng', pageCreatedAt: '2016-07-05 16:21:22', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '3', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '109', text: '[summary: The real numbers can be defined using [dedekind_cut Dedekind cuts], which are [set_partition partitions] of the rational numbers into two sets where every element in one set is less than every element in the other set. Each real number is uniquely defined by a one-sided Dedekind cut.]\n\n%%comment: Mnemonics for defined macros: \\Ql = Q left, \\Qr = Q right, \\Qls = Q left strict, \\Qrs = Q right strict.%%\n\nThe rational numbers have a problem that makes them unsuitable for use in calculus — they have "gaps" in them. This may not be obvious or even make sense at first, because between any two rational numbers you can always find infinitely many other rational numbers. How could there be *gaps* in a set like that? $\\newcommand{\\rats}{\\mathbb{Q}} \\newcommand{\\Ql}{\\rats^\\le} \\newcommand{\\Qr}{\\rats^\\ge} \\newcommand{\\Qls}{\\rats^<} \\newcommand{\\Qrs}{\\rats^>}$\n$\\newcommand{\\set}[1]{\\left\\{#1\\right\\}} \\newcommand{\\sothat}{\\ |\\ }$ \n\nBut using the construction of [dedekind_cut Dedekind cuts], we can suss out these gaps into plain view. A Dedekind cut of a [-540] $S$ is a pair of sets $(A, B)$ such that:\n\n1. Every element of $S$ is in exactly one of $A$ or $B$. (That is, $(A, B)$ is a [set_partition partition] of $S$.)\n2. Every element of $A$ is less than every element of $B$.\n3. Neither $A$ nor $B$ is [empty_set empty]. (We'll see why this restriction matters in a moment.)\n\nOne example of such a cut might be the set where $A$ is the negative rational numbers and $B$ is the nonnegative rational numbers (positive or zero). We see that it satisfies the three properties of a Dedekind cut:\n\n1. Every rational number is either negative or nonnegative, but not both.\n2. Every rational number which is negative is less than a rational number that is nonnegative.\n3. There exists at least one negative rational number (e.g. $-1$) and one nonnegative rational number (e.g. $1$).\n\nIn fact, Dedekind cuts are intended to represent sets of rational numbers that are less than or greater than a specific real number (once we've defined them). To represent this, let's call them $\\Ql$ and $\\Qr$.\n\nKnowing this, why does it matter that neither set in a Dedekind cut is empty?\n\n%%hidden(Show solution): \nIf $\\Ql$ were empty, then we'd have a real number less than _all_ the rational numbers, which is $-\\infty$, which we don't want to define as a real number. Similarly, if $\\Qr$ were empty, then we'd get $+\\infty$.\n%%\n\n## Completion of a space\n\nIf a space is [ complete] (doesn't have any gaps in it), then in any Dedekind cut $(\\Ql, \\Qr)$, either $\\Ql$ will have a greatest element or $\\Qr$ will have a least element. (We can't have both at the same time — why?)\n\n%%hidden(Show solution):\nSuppose $\\Ql$ had a greatest element $q_u$ and $\\Qr$ had a least element $q_v$. We can't have $q_u = q_v$, because the same number would be in both sets. So then because the rational numbers are a dense space, there must exist a rational number $r$ so that $q_u < r < q_v$. Then $r$ is not in either $\\Ql$ or $\\Qr$, contradicting property 1 of a Dedekind cut.\n%%\n\nBut in the rational numbers, we can find a Dedekind cut where neither $\\Ql$ nor $\\Qr$ have a greatest or least element respectively.\n\nConsider the pair of sets $(\\Ql, \\Qr)$ where $\\Ql = \\set{x \\in \\rats \\mid x^3 \\le 2}$ and $\\Qr = \\set{x \\in \\rats \\mid x^3 \\ge 2}$.\n\n1. Every rational number has a cube either greater than 2 or less than 2, \n2. Because $f(x) = x^3$ is a [ monotonically increasing] function, we have that $p < q \\iff p^3 < q^3$, which means that every element in $\\Ql$ is less than every element in $\\Qr$.\n\nSo $(\\Ql, \\Qr)$ is a Dedekind cut. However, there is no rational number whose cube is *equal to* $2$, so $\\Ql$ has no greatest element and $\\Qr$ has no least element.\n\nThis represents a gap in the numbers, because we can invent a new number to place in that gap (in this case $\\sqrt[3]{2}$), which is "between" any two numbers in $\\Ql$ and $\\Qr$.\n\n## Definition of real numbers\n\nBefore we move on, we will define one more structure that makes the construction more elegant. Define a *one-sided Dedekind cut* as any Dedekind cut $(\\Ql, \\Qr)$ with the additional property that the set $\\Ql$ has no greatest element (in which case we now call it $\\Qls$). The case where $\\Ql$ has a greatest element $q_g$ can be trivially transformed into the equivalent case on the other side by moving $q_g$ to $\\Qr$ where it is automatically the least element due to being less than any other element in $\\Qr$.\n\nThen we define the real numbers as the set of one-sided Dedekind cuts of the rational numbers.\n\n* A rational number $r$ is mapped to itself by the Dedekind cut where $r$ itself is the least element of $\\Qr$. (If the cuts weren't one-sided, $r$ would also be mapped to the set where $r$ was the greatest element of $\\Ql$, which would make the mapping non-unique.)\n* An irrational number $q$ is newly defined by the Dedekind cut where all the elements of $\\Qls$ are less than $q$ and all the elements of $\\Qr$ are (strictly) greater than $q$.\n\nNow we can define the [549 total order] $\\le$ for two real numbers $a = (\\Qls_a, \\Qr_a)$ and $b = (\\Qls_b, \\Qr_b)$ as follows: $a \\le b$ when $\\Qls_a \\subseteq \\Qls_b$. \n\nUsing this, we can show that unlike in the [50d Cauchy sequence definition], we don't need to define any equivalence classes — every real number is uniquely defined by a one-sided Dedekind cut.\n\n%%hidden(Proof):\nIf $a = b$, then $a \\le b$ and $b \\le a$. By the definition of the order, we have that $\\Qls_a \\subseteq \\Qls_b$ and $\\Qls_b \\subseteq \\Qls_a$, which means that $\\Qls_a = \\Qls_b$, which means that the Dedekind cuts corresponding to $a$ and $b$ are also equal.\n%%\n\n[todo: Proof of the field structure of Dedekind cuts.]', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'true', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'JoeZeng', 'DylanHendrickson', 'PatrickStevens', 'KevinClancy' ], childIds: [ 'reals_as_dedekind_cuts_form_a_field' ], parentIds: [ 'real_number' ], commentIds: [ '5f9' ], questionIds: [], tagIds: [ 'stub_meta_tag' ], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: 'real_number', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '3215', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '17423', pageId: 'real_number_as_dedekind_cut', userId: 'KevinClancy', edit: '16', type: 'newEdit', createdAt: '2016-07-23 19:41:20', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'Any topological space is dense in itself.' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15967', pageId: 'real_number_as_dedekind_cut', userId: 'DylanHendrickson', edit: '15', type: 'newEdit', createdAt: '2016-07-07 14:00:09', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15966', pageId: 'real_number_as_dedekind_cut', userId: 'DylanHendrickson', edit: '14', type: 'newEdit', createdAt: '2016-07-07 13:51:09', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15894', pageId: 'real_number_as_dedekind_cut', userId: 'JoeZeng', edit: '13', type: 'newEdit', createdAt: '2016-07-07 01:44:30', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15893', pageId: 'real_number_as_dedekind_cut', userId: 'JoeZeng', edit: '12', type: 'newEdit', createdAt: '2016-07-07 01:43:33', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15551', pageId: 'real_number_as_dedekind_cut', userId: 'JoeZeng', edit: '11', type: 'newEdit', createdAt: '2016-07-06 03:19:52', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'Fixing LaTeX macro error.' }, { likeableId: '2960', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '15550', pageId: 'real_number_as_dedekind_cut', userId: 'JoeZeng', edit: '10', type: 'newEdit', createdAt: '2016-07-06 03:18:22', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'Added a general summary.' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15549', pageId: 'real_number_as_dedekind_cut', userId: 'JoeZeng', edit: '0', type: 'deleteTag', createdAt: '2016-07-06 03:17:49', auxPageId: 'needs_summary_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15464', pageId: 'real_number_as_dedekind_cut', userId: 'PatrickStevens', edit: '0', type: 'newChild', createdAt: '2016-07-05 22:03:56', auxPageId: 'reals_as_dedekind_cuts_form_a_field', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15446', pageId: 'real_number_as_dedekind_cut', userId: 'DylanHendrickson', edit: '9', type: 'newEditProposal', createdAt: '2016-07-05 21:43:14', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15441', pageId: 'real_number_as_dedekind_cut', userId: 'JoeZeng', edit: '8', type: 'newEdit', createdAt: '2016-07-05 21:18:58', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15433', pageId: 'real_number_as_dedekind_cut', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-07-05 20:47:13', auxPageId: 'needs_summary_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15432', pageId: 'real_number_as_dedekind_cut', userId: 'JoeZeng', edit: '7', type: 'newEdit', createdAt: '2016-07-05 20:45:46', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15431', pageId: 'real_number_as_dedekind_cut', userId: 'JoeZeng', edit: '6', type: 'newEdit', createdAt: '2016-07-05 20:45:07', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'Improved the terminology here as well' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15410', pageId: 'real_number_as_dedekind_cut', userId: 'JoeZeng', edit: '0', type: 'newParent', createdAt: '2016-07-05 19:34:04', auxPageId: 'real_number', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15398', pageId: 'real_number_as_dedekind_cut', userId: 'PatrickStevens', edit: '3', type: 'newEdit', createdAt: '2016-07-05 18:08:17', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15392', pageId: 'real_number_as_dedekind_cut', userId: 'JoeZeng', edit: '2', type: 'newEdit', createdAt: '2016-07-05 16:39:53', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15391', pageId: 'real_number_as_dedekind_cut', userId: 'JoeZeng', edit: '0', type: 'newAlias', createdAt: '2016-07-05 16:21:55', auxPageId: '', oldSettingsValue: '50g', newSettingsValue: 'real_number_as_dedekind_cut' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15390', pageId: 'real_number_as_dedekind_cut', userId: 'JoeZeng', edit: '0', type: 'newTag', createdAt: '2016-07-05 16:21:23', auxPageId: 'stub_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15389', pageId: 'real_number_as_dedekind_cut', userId: 'JoeZeng', edit: '1', type: 'newEdit', createdAt: '2016-07-05 16:21:22', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'true', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }