{
localUrl: '../page/algebraic_ring.html',
arbitalUrl: 'https://arbital.com/p/algebraic_ring',
rawJsonUrl: '../raw/3gq.json',
likeableId: '3464',
likeableType: 'page',
myLikeValue: '0',
likeCount: '2',
dislikeCount: '0',
likeScore: '2',
individualLikes: [
'EricBruylant',
'MartinEpstein'
],
pageId: 'algebraic_ring',
edit: '13',
editSummary: '',
prevEdit: '12',
currentEdit: '13',
wasPublished: 'true',
type: 'wiki',
title: 'Ring',
clickbait: '',
textLength: '3410',
alias: 'algebraic_ring',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'PatrickStevens',
editCreatedAt: '2016-07-28 13:14:11',
pageCreatorId: 'NateSoares',
pageCreatedAt: '2016-05-09 07:23:03',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '111',
text: '[summary: A ring is a kind of [-3gx] which we obtain by considering [3gd groups] as being "things with addition" and then endowing them with a multiplication operation which must interact appropriately with the pre-existing addition. Terminology varies across sources; we will take "ring" to refer to "commutative ring with $1$".]\n\n[summary(Technical): A ring $R$ is a triple $(X, \\oplus, \\otimes)$ where $X$ is a [3jz set] and $\\oplus$ and $\\otimes$ are binary [set_theory_operation operations] subject to the ring axioms. We write $x \\oplus y$ for the application of $\\oplus$ to $x, y \\in X$, which must be defined, and similarly for $\\otimes$. Terminology varies across sources; our rings will have both operations [3jb commutative] and will have an [-54p] under multiplication, denoted $1$.]\n\nA ring $R$ is a triple $(X, \\oplus, \\otimes)$ where $X$ is a [3jz set] and $\\oplus$ and $\\otimes$ are binary [set_theory_operation operations] subject to the ring axioms. We write $x \\oplus y$ for the application of $\\oplus$ to $x, y \\in X$, which must be defined, and similarly for $\\otimes$. It is standard to abbreviate $x \\otimes y$ as $xy$ when $\\otimes$ can be inferred from context. The ten ring axioms (which govern the behavior of $\\oplus$ and $\\otimes$) are as follows:\n\n1. $X$ must be a [3h2 commutative group] under $\\oplus$. That means:\n * $X$ must be [3gy closed] under $\\oplus$.\n * $\\oplus$ must be [associative_function associative].\n * $\\oplus$ must be [commutative_function commutative].\n * $\\oplus$ must have an identity, which is usually named $0$.\n * Every $x \\in X$ must have an inverse $(-x) \\in X$ such that $x \\oplus (-x) = 0$.\n2. $X$ must be a [3h3 monoid] under $\\otimes$. That means:\n * $X$ must be [3gy closed] under $\\otimes$.\n * $\\otimes$ must be [associative_function associative].\n * $\\otimes$ must have an identity, which is usually named $1$.\n3. $\\otimes$ must [distributive_property distribute] over $\\oplus$. That means:\n * $a \\otimes (x \\oplus y) = (a\\otimes x) \\oplus (a\\otimes y)$ for all $a, x, y \\in X$.\n * $(x \\oplus y)\\otimes a = (x\\otimes a) \\oplus (y\\otimes a)$ for all $a, x, y \\in X$.\n \nThough the axioms are many, the idea is simple: A ring is a [3h2 commutative group] equipped with an additional operation, under which the ring is a [3h3 monoid], and the two operations play nice together (the monoid operation [distributive_property distributes] over the group operation).\n\nA ring is an [3gx algebraic structure]. To see how it relates to other algebraic structures, refer to the [5dz tree of algebraic structures].\n\n# Examples\n\nThe integers $\\mathbb{Z}$ form a ring under addition and multiplication.\n\n[fixme: Add more example rings.]\n\\[work in progress.\\]\n\n# Notation\n\nGiven a ring $R = (X, \\oplus, \\otimes)$, we say "$R$ forms a ring under $\\oplus$ and $\\otimes$." $X$ is called the [3gz underlying set] of $R$. $\\oplus$ is called the "additive operation," $0$ is called the "additive identity", $-x$ is called the "additive inverse" of $x$. $\\otimes$ is called the "multiplicative operation," $1$ is called the "multiplicative identity", and a ring does not necessarily have multiplicative inverses.\n\n# Basic properties\n\n[fixme: Add the basic properties of rings.]\n\\[work in progress.\\]\n\n# Interpretations, Visualizations, and Applications\n\n[fixme: Add (links to) interpretations, visualizations, and applications.]\n\\[work in progress.\\]',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'true',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'NateSoares',
'PatrickStevens'
],
childIds: [
'ordered_ring',
'irreducible_element_ring_theory',
'prime_element_ring_theory',
'integral_domain',
'pid_implies_prime_equals_irreducible',
'unit_ring_theory',
'principal_ideal_domain',
'kernel_of_ring_homomorphism',
'ideal_equals_kernel_of_ring_homomorphism',
'euclidean_domain_is_pid',
'unique_factorisation_domain'
],
parentIds: [
'algebraic_structure'
],
commentIds: [],
questionIds: [],
tagIds: [
'start_meta_tag',
'work_in_progress_meta_tag',
'needs_clickbait_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19347',
pageId: 'algebraic_ring',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-08-28 00:34:53',
auxPageId: 'start_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19346',
pageId: 'algebraic_ring',
userId: 'EricBruylant',
edit: '0',
type: 'deleteTag',
createdAt: '2016-08-28 00:34:48',
auxPageId: 'c_class_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '19344',
pageId: 'algebraic_ring',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-08-28 00:33:51',
auxPageId: 'c_class_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18728',
pageId: 'algebraic_ring',
userId: 'PatrickStevens',
edit: '0',
type: 'newChild',
createdAt: '2016-08-14 12:54:43',
auxPageId: 'unique_factorisation_domain',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18723',
pageId: 'algebraic_ring',
userId: 'PatrickStevens',
edit: '0',
type: 'newChild',
createdAt: '2016-08-14 11:01:25',
auxPageId: 'euclidean_domain_is_pid',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18257',
pageId: 'algebraic_ring',
userId: 'PatrickStevens',
edit: '0',
type: 'newChild',
createdAt: '2016-08-03 18:30:26',
auxPageId: 'ideal_equals_kernel_of_ring_homomorphism',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18235',
pageId: 'algebraic_ring',
userId: 'PatrickStevens',
edit: '0',
type: 'newChild',
createdAt: '2016-08-03 16:53:01',
auxPageId: 'kernel_of_ring_homomorphism',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18221',
pageId: 'algebraic_ring',
userId: 'PatrickStevens',
edit: '0',
type: 'newChild',
createdAt: '2016-08-03 16:31:08',
auxPageId: 'principal_ideal_domain',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17644',
pageId: 'algebraic_ring',
userId: 'PatrickStevens',
edit: '0',
type: 'newChild',
createdAt: '2016-07-28 15:12:06',
auxPageId: 'unit_ring_theory',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17639',
pageId: 'algebraic_ring',
userId: 'PatrickStevens',
edit: '0',
type: 'newChild',
createdAt: '2016-07-28 14:03:14',
auxPageId: 'pid_implies_prime_equals_irreducible',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17636',
pageId: 'algebraic_ring',
userId: 'PatrickStevens',
edit: '0',
type: 'newChild',
createdAt: '2016-07-28 13:33:15',
auxPageId: 'integral_domain',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3288',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '17634',
pageId: 'algebraic_ring',
userId: 'PatrickStevens',
edit: '13',
type: 'newEdit',
createdAt: '2016-07-28 13:14:11',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17600',
pageId: 'algebraic_ring',
userId: 'PatrickStevens',
edit: '0',
type: 'newChild',
createdAt: '2016-07-27 20:21:57',
auxPageId: 'prime_element_ring_theory',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17596',
pageId: 'algebraic_ring',
userId: 'PatrickStevens',
edit: '0',
type: 'newChild',
createdAt: '2016-07-27 19:22:11',
auxPageId: 'irreducible_element_ring_theory',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17128',
pageId: 'algebraic_ring',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-07-19 02:07:46',
auxPageId: 'needs_clickbait_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15780',
pageId: 'algebraic_ring',
userId: 'DylanHendrickson',
edit: '0',
type: 'newChild',
createdAt: '2016-07-06 20:45:04',
auxPageId: 'ordered_ring',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12548',
pageId: 'algebraic_ring',
userId: 'PatrickStevens',
edit: '12',
type: 'newRequiredBy',
createdAt: '2016-06-13 16:15:47',
auxPageId: 'algebraic_field',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12338',
pageId: 'algebraic_ring',
userId: 'NateSoares',
edit: '12',
type: 'newEdit',
createdAt: '2016-06-10 16:44:49',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12337',
pageId: 'algebraic_ring',
userId: 'NateSoares',
edit: '11',
type: 'newEdit',
createdAt: '2016-06-10 16:44:33',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '9929',
pageId: 'algebraic_ring',
userId: 'NateSoares',
edit: '5',
type: 'newEdit',
createdAt: '2016-05-10 23:25:58',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '9926',
pageId: 'algebraic_ring',
userId: 'NateSoares',
edit: '4',
type: 'newEdit',
createdAt: '2016-05-10 23:23:19',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '9764',
pageId: 'algebraic_ring',
userId: 'PatrickStevens',
edit: '2',
type: 'newEdit',
createdAt: '2016-05-10 18:15:59',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '9719',
pageId: 'algebraic_ring',
userId: 'NateSoares',
edit: '1',
type: 'newEdit',
createdAt: '2016-05-09 07:23:03',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '9716',
pageId: 'algebraic_ring',
userId: 'NateSoares',
edit: '0',
type: 'newParent',
createdAt: '2016-05-09 07:17:56',
auxPageId: 'algebraic_structure',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '9715',
pageId: 'algebraic_ring',
userId: 'NateSoares',
edit: '0',
type: 'newTag',
createdAt: '2016-05-09 07:17:51',
auxPageId: 'work_in_progress_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'true',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}