{
  localUrl: '../page/algebraic_ring.html',
  arbitalUrl: 'https://arbital.com/p/algebraic_ring',
  rawJsonUrl: '../raw/3gq.json',
  likeableId: '3464',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '2',
  dislikeCount: '0',
  likeScore: '2',
  individualLikes: [
    'EricBruylant',
    'MartinEpstein'
  ],
  pageId: 'algebraic_ring',
  edit: '13',
  editSummary: '',
  prevEdit: '12',
  currentEdit: '13',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Ring',
  clickbait: '',
  textLength: '3410',
  alias: 'algebraic_ring',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-07-28 13:14:11',
  pageCreatorId: 'NateSoares',
  pageCreatedAt: '2016-05-09 07:23:03',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '111',
  text: '[summary: A ring is a kind of [-3gx] which we obtain by considering [3gd groups] as being "things with addition" and then endowing them with a multiplication operation which must interact appropriately with the pre-existing addition. Terminology varies across sources;  we will take "ring" to refer to "commutative ring with $1$".]\n\n[summary(Technical): A ring $R$ is a triple $(X, \\oplus, \\otimes)$ where $X$ is a [3jz set] and $\\oplus$ and $\\otimes$ are binary [set_theory_operation operations] subject to the ring axioms. We write $x \\oplus y$ for the application of $\\oplus$ to $x, y \\in X$, which must be defined, and similarly for $\\otimes$. Terminology varies across sources; our rings will have both operations [3jb commutative] and will have an [-54p] under multiplication, denoted $1$.]\n\nA ring $R$ is a triple $(X, \\oplus, \\otimes)$ where $X$ is a [3jz set] and $\\oplus$ and $\\otimes$ are binary [set_theory_operation operations] subject to the ring axioms. We write $x \\oplus y$ for the application of $\\oplus$ to $x, y \\in X$, which must be defined, and similarly for $\\otimes$. It is standard to abbreviate $x \\otimes y$ as $xy$ when $\\otimes$ can be inferred from context. The ten ring axioms (which govern the behavior of $\\oplus$ and $\\otimes$) are as follows:\n\n1. $X$ must be a [3h2 commutative group] under $\\oplus$. That means:\n   * $X$ must be [3gy closed] under $\\oplus$.\n   * $\\oplus$ must be [associative_function associative].\n   * $\\oplus$ must be [commutative_function commutative].\n   * $\\oplus$ must have an identity, which is usually named $0$.\n   * Every $x \\in X$ must have an inverse $(-x) \\in X$ such that $x \\oplus (-x) = 0$.\n2. $X$ must be a [3h3 monoid] under $\\otimes$. That means:\n   * $X$ must be [3gy closed] under $\\otimes$.\n   * $\\otimes$ must be [associative_function associative].\n   * $\\otimes$ must have an identity, which is usually named $1$.\n3. $\\otimes$ must [distributive_property distribute] over $\\oplus$. That means:\n  * $a \\otimes (x \\oplus y) = (a\\otimes x) \\oplus (a\\otimes y)$ for all $a, x, y \\in X$.\n  * $(x \\oplus y)\\otimes a = (x\\otimes a) \\oplus (y\\otimes a)$ for all $a, x, y \\in X$.\n \nThough the axioms are many, the idea is simple: A ring is a [3h2 commutative group] equipped with an additional operation, under which the ring is a [3h3 monoid], and the two operations play nice together (the monoid operation [distributive_property distributes] over the group operation).\n\nA ring is an [3gx algebraic structure].  To see how it relates to other algebraic structures, refer to the [5dz tree of algebraic structures].\n\n# Examples\n\nThe integers $\\mathbb{Z}$ form a ring under addition and multiplication.\n\n[fixme: Add more example rings.]\n\\[work in progress.\\]\n\n# Notation\n\nGiven a ring $R = (X, \\oplus, \\otimes)$, we say "$R$ forms a ring under $\\oplus$ and $\\otimes$." $X$ is called the [3gz underlying set] of $R$. $\\oplus$ is called the "additive operation," $0$ is called the "additive identity", $-x$ is called the "additive inverse" of $x$. $\\otimes$ is called the "multiplicative operation," $1$ is called the "multiplicative identity", and a ring does not necessarily have multiplicative inverses.\n\n# Basic properties\n\n[fixme: Add the basic properties of rings.]\n\\[work in progress.\\]\n\n# Interpretations, Visualizations, and Applications\n\n[fixme: Add (links to) interpretations, visualizations, and applications.]\n\\[work in progress.\\]',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'true',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'NateSoares',
    'PatrickStevens'
  ],
  childIds: [
    'ordered_ring',
    'irreducible_element_ring_theory',
    'prime_element_ring_theory',
    'integral_domain',
    'pid_implies_prime_equals_irreducible',
    'unit_ring_theory',
    'principal_ideal_domain',
    'kernel_of_ring_homomorphism',
    'ideal_equals_kernel_of_ring_homomorphism',
    'euclidean_domain_is_pid',
    'unique_factorisation_domain'
  ],
  parentIds: [
    'algebraic_structure'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'start_meta_tag',
    'work_in_progress_meta_tag',
    'needs_clickbait_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19347',
      pageId: 'algebraic_ring',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-08-28 00:34:53',
      auxPageId: 'start_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19346',
      pageId: 'algebraic_ring',
      userId: 'EricBruylant',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-08-28 00:34:48',
      auxPageId: 'c_class_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19344',
      pageId: 'algebraic_ring',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-08-28 00:33:51',
      auxPageId: 'c_class_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18728',
      pageId: 'algebraic_ring',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-08-14 12:54:43',
      auxPageId: 'unique_factorisation_domain',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18723',
      pageId: 'algebraic_ring',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-08-14 11:01:25',
      auxPageId: 'euclidean_domain_is_pid',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18257',
      pageId: 'algebraic_ring',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-08-03 18:30:26',
      auxPageId: 'ideal_equals_kernel_of_ring_homomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18235',
      pageId: 'algebraic_ring',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-08-03 16:53:01',
      auxPageId: 'kernel_of_ring_homomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18221',
      pageId: 'algebraic_ring',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-08-03 16:31:08',
      auxPageId: 'principal_ideal_domain',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17644',
      pageId: 'algebraic_ring',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-28 15:12:06',
      auxPageId: 'unit_ring_theory',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17639',
      pageId: 'algebraic_ring',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-28 14:03:14',
      auxPageId: 'pid_implies_prime_equals_irreducible',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17636',
      pageId: 'algebraic_ring',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-28 13:33:15',
      auxPageId: 'integral_domain',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3288',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '17634',
      pageId: 'algebraic_ring',
      userId: 'PatrickStevens',
      edit: '13',
      type: 'newEdit',
      createdAt: '2016-07-28 13:14:11',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17600',
      pageId: 'algebraic_ring',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-27 20:21:57',
      auxPageId: 'prime_element_ring_theory',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17596',
      pageId: 'algebraic_ring',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-27 19:22:11',
      auxPageId: 'irreducible_element_ring_theory',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '17128',
      pageId: 'algebraic_ring',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-19 02:07:46',
      auxPageId: 'needs_clickbait_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15780',
      pageId: 'algebraic_ring',
      userId: 'DylanHendrickson',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-06 20:45:04',
      auxPageId: 'ordered_ring',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12548',
      pageId: 'algebraic_ring',
      userId: 'PatrickStevens',
      edit: '12',
      type: 'newRequiredBy',
      createdAt: '2016-06-13 16:15:47',
      auxPageId: 'algebraic_field',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12338',
      pageId: 'algebraic_ring',
      userId: 'NateSoares',
      edit: '12',
      type: 'newEdit',
      createdAt: '2016-06-10 16:44:49',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12337',
      pageId: 'algebraic_ring',
      userId: 'NateSoares',
      edit: '11',
      type: 'newEdit',
      createdAt: '2016-06-10 16:44:33',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '9929',
      pageId: 'algebraic_ring',
      userId: 'NateSoares',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-05-10 23:25:58',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '9926',
      pageId: 'algebraic_ring',
      userId: 'NateSoares',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-05-10 23:23:19',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '9764',
      pageId: 'algebraic_ring',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-05-10 18:15:59',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '9719',
      pageId: 'algebraic_ring',
      userId: 'NateSoares',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-05-09 07:23:03',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '9716',
      pageId: 'algebraic_ring',
      userId: 'NateSoares',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-05-09 07:17:56',
      auxPageId: 'algebraic_structure',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '9715',
      pageId: 'algebraic_ring',
      userId: 'NateSoares',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-05-09 07:17:51',
      auxPageId: 'work_in_progress_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'true',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}