{ localUrl: '../page/algebraic_ring.html', arbitalUrl: 'https://arbital.com/p/algebraic_ring', rawJsonUrl: '../raw/3gq.json', likeableId: '3464', likeableType: 'page', myLikeValue: '0', likeCount: '2', dislikeCount: '0', likeScore: '2', individualLikes: [ 'EricBruylant', 'MartinEpstein' ], pageId: 'algebraic_ring', edit: '13', editSummary: '', prevEdit: '12', currentEdit: '13', wasPublished: 'true', type: 'wiki', title: 'Ring', clickbait: '', textLength: '3410', alias: 'algebraic_ring', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'PatrickStevens', editCreatedAt: '2016-07-28 13:14:11', pageCreatorId: 'NateSoares', pageCreatedAt: '2016-05-09 07:23:03', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '111', text: '[summary: A ring is a kind of [-3gx] which we obtain by considering [3gd groups] as being "things with addition" and then endowing them with a multiplication operation which must interact appropriately with the pre-existing addition. Terminology varies across sources; we will take "ring" to refer to "commutative ring with $1$".]\n\n[summary(Technical): A ring $R$ is a triple $(X, \\oplus, \\otimes)$ where $X$ is a [3jz set] and $\\oplus$ and $\\otimes$ are binary [set_theory_operation operations] subject to the ring axioms. We write $x \\oplus y$ for the application of $\\oplus$ to $x, y \\in X$, which must be defined, and similarly for $\\otimes$. Terminology varies across sources; our rings will have both operations [3jb commutative] and will have an [-54p] under multiplication, denoted $1$.]\n\nA ring $R$ is a triple $(X, \\oplus, \\otimes)$ where $X$ is a [3jz set] and $\\oplus$ and $\\otimes$ are binary [set_theory_operation operations] subject to the ring axioms. We write $x \\oplus y$ for the application of $\\oplus$ to $x, y \\in X$, which must be defined, and similarly for $\\otimes$. It is standard to abbreviate $x \\otimes y$ as $xy$ when $\\otimes$ can be inferred from context. The ten ring axioms (which govern the behavior of $\\oplus$ and $\\otimes$) are as follows:\n\n1. $X$ must be a [3h2 commutative group] under $\\oplus$. That means:\n * $X$ must be [3gy closed] under $\\oplus$.\n * $\\oplus$ must be [associative_function associative].\n * $\\oplus$ must be [commutative_function commutative].\n * $\\oplus$ must have an identity, which is usually named $0$.\n * Every $x \\in X$ must have an inverse $(-x) \\in X$ such that $x \\oplus (-x) = 0$.\n2. $X$ must be a [3h3 monoid] under $\\otimes$. That means:\n * $X$ must be [3gy closed] under $\\otimes$.\n * $\\otimes$ must be [associative_function associative].\n * $\\otimes$ must have an identity, which is usually named $1$.\n3. $\\otimes$ must [distributive_property distribute] over $\\oplus$. That means:\n * $a \\otimes (x \\oplus y) = (a\\otimes x) \\oplus (a\\otimes y)$ for all $a, x, y \\in X$.\n * $(x \\oplus y)\\otimes a = (x\\otimes a) \\oplus (y\\otimes a)$ for all $a, x, y \\in X$.\n \nThough the axioms are many, the idea is simple: A ring is a [3h2 commutative group] equipped with an additional operation, under which the ring is a [3h3 monoid], and the two operations play nice together (the monoid operation [distributive_property distributes] over the group operation).\n\nA ring is an [3gx algebraic structure]. To see how it relates to other algebraic structures, refer to the [5dz tree of algebraic structures].\n\n# Examples\n\nThe integers $\\mathbb{Z}$ form a ring under addition and multiplication.\n\n[fixme: Add more example rings.]\n\\[work in progress.\\]\n\n# Notation\n\nGiven a ring $R = (X, \\oplus, \\otimes)$, we say "$R$ forms a ring under $\\oplus$ and $\\otimes$." $X$ is called the [3gz underlying set] of $R$. $\\oplus$ is called the "additive operation," $0$ is called the "additive identity", $-x$ is called the "additive inverse" of $x$. $\\otimes$ is called the "multiplicative operation," $1$ is called the "multiplicative identity", and a ring does not necessarily have multiplicative inverses.\n\n# Basic properties\n\n[fixme: Add the basic properties of rings.]\n\\[work in progress.\\]\n\n# Interpretations, Visualizations, and Applications\n\n[fixme: Add (links to) interpretations, visualizations, and applications.]\n\\[work in progress.\\]', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'true', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'NateSoares', 'PatrickStevens' ], childIds: [ 'ordered_ring', 'irreducible_element_ring_theory', 'prime_element_ring_theory', 'integral_domain', 'pid_implies_prime_equals_irreducible', 'unit_ring_theory', 'principal_ideal_domain', 'kernel_of_ring_homomorphism', 'ideal_equals_kernel_of_ring_homomorphism', 'euclidean_domain_is_pid', 'unique_factorisation_domain' ], parentIds: [ 'algebraic_structure' ], commentIds: [], questionIds: [], tagIds: [ 'start_meta_tag', 'work_in_progress_meta_tag', 'needs_clickbait_meta_tag' ], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19347', pageId: 'algebraic_ring', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-08-28 00:34:53', auxPageId: 'start_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19346', pageId: 'algebraic_ring', userId: 'EricBruylant', edit: '0', type: 'deleteTag', createdAt: '2016-08-28 00:34:48', auxPageId: 'c_class_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '19344', pageId: 'algebraic_ring', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-08-28 00:33:51', auxPageId: 'c_class_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18728', pageId: 'algebraic_ring', userId: 'PatrickStevens', edit: '0', type: 'newChild', createdAt: '2016-08-14 12:54:43', auxPageId: 'unique_factorisation_domain', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18723', pageId: 'algebraic_ring', userId: 'PatrickStevens', edit: '0', type: 'newChild', createdAt: '2016-08-14 11:01:25', auxPageId: 'euclidean_domain_is_pid', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18257', pageId: 'algebraic_ring', userId: 'PatrickStevens', edit: '0', type: 'newChild', createdAt: '2016-08-03 18:30:26', auxPageId: 'ideal_equals_kernel_of_ring_homomorphism', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18235', pageId: 'algebraic_ring', userId: 'PatrickStevens', edit: '0', type: 'newChild', createdAt: '2016-08-03 16:53:01', auxPageId: 'kernel_of_ring_homomorphism', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18221', pageId: 'algebraic_ring', userId: 'PatrickStevens', edit: '0', type: 'newChild', createdAt: '2016-08-03 16:31:08', auxPageId: 'principal_ideal_domain', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17644', pageId: 'algebraic_ring', userId: 'PatrickStevens', edit: '0', type: 'newChild', createdAt: '2016-07-28 15:12:06', auxPageId: 'unit_ring_theory', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17639', pageId: 'algebraic_ring', userId: 'PatrickStevens', edit: '0', type: 'newChild', createdAt: '2016-07-28 14:03:14', auxPageId: 'pid_implies_prime_equals_irreducible', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17636', pageId: 'algebraic_ring', userId: 'PatrickStevens', edit: '0', type: 'newChild', createdAt: '2016-07-28 13:33:15', auxPageId: 'integral_domain', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3288', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '17634', pageId: 'algebraic_ring', userId: 'PatrickStevens', edit: '13', type: 'newEdit', createdAt: '2016-07-28 13:14:11', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17600', pageId: 'algebraic_ring', userId: 'PatrickStevens', edit: '0', type: 'newChild', createdAt: '2016-07-27 20:21:57', auxPageId: 'prime_element_ring_theory', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17596', pageId: 'algebraic_ring', userId: 'PatrickStevens', edit: '0', type: 'newChild', createdAt: '2016-07-27 19:22:11', auxPageId: 'irreducible_element_ring_theory', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17128', pageId: 'algebraic_ring', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-07-19 02:07:46', auxPageId: 'needs_clickbait_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15780', pageId: 'algebraic_ring', userId: 'DylanHendrickson', edit: '0', type: 'newChild', createdAt: '2016-07-06 20:45:04', auxPageId: 'ordered_ring', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12548', pageId: 'algebraic_ring', userId: 'PatrickStevens', edit: '12', type: 'newRequiredBy', createdAt: '2016-06-13 16:15:47', auxPageId: 'algebraic_field', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12338', pageId: 'algebraic_ring', userId: 'NateSoares', edit: '12', type: 'newEdit', createdAt: '2016-06-10 16:44:49', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12337', pageId: 'algebraic_ring', userId: 'NateSoares', edit: '11', type: 'newEdit', createdAt: '2016-06-10 16:44:33', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '9929', pageId: 'algebraic_ring', userId: 'NateSoares', edit: '5', type: 'newEdit', createdAt: '2016-05-10 23:25:58', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '9926', pageId: 'algebraic_ring', userId: 'NateSoares', edit: '4', type: 'newEdit', createdAt: '2016-05-10 23:23:19', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '9764', pageId: 'algebraic_ring', userId: 'PatrickStevens', edit: '2', type: 'newEdit', createdAt: '2016-05-10 18:15:59', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '9719', pageId: 'algebraic_ring', userId: 'NateSoares', edit: '1', type: 'newEdit', createdAt: '2016-05-09 07:23:03', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '9716', pageId: 'algebraic_ring', userId: 'NateSoares', edit: '0', type: 'newParent', createdAt: '2016-05-09 07:17:56', auxPageId: 'algebraic_structure', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '9715', pageId: 'algebraic_ring', userId: 'NateSoares', edit: '0', type: 'newTag', createdAt: '2016-05-09 07:17:51', auxPageId: 'work_in_progress_meta_tag', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'true', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }