{
  localUrl: '../page/ordered_ring.html',
  arbitalUrl: 'https://arbital.com/p/ordered_ring',
  rawJsonUrl: '../raw/55j.json',
  likeableId: '2967',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '2',
  dislikeCount: '0',
  likeScore: '2',
  individualLikes: [
    'EricBruylant',
    'KevinClancy'
  ],
  pageId: 'ordered_ring',
  edit: '7',
  editSummary: '',
  prevEdit: '6',
  currentEdit: '7',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Ordered ring',
  clickbait: 'A ring with a total ordering compatible with its ring structure.',
  textLength: '2533',
  alias: 'ordered_ring',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'DylanHendrickson',
  editCreatedAt: '2016-07-07 18:51:00',
  pageCreatorId: 'DylanHendrickson',
  pageCreatedAt: '2016-07-06 15:57:17',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '98',
  text: '[summary: An **ordered ring** is a [-3gq] that is [540 totally ordered], where the ordering agrees with the ring operations. In particular, adding something to two elements doesn't change which of them is bigger, and the product of two [-positive] elements is positive.]\n\nAn **ordered ring** is a [-3gq] $R=(X,\\oplus,\\otimes)$ with a [540 total order] $\\leq$ compatible with the ring structure. Specifically, it must satisfy these axioms for any $a,b,c \\in X$:\n\n- If $a \\leq b$, then $a \\oplus c \\leq b \\oplus c$.\n- If $0 \\leq a$ and $0 \\leq b$, then $0 \\leq a \\otimes b$\n\nAn element $a$ of the ring is called "[-positive]" if $0<a$ and "[-negative]" if $a<0$. The second axiom, then, says that the product of nonnegative elements is nonnegative. \n\nAn ordered ring that is also a [481 field] is an [-ordered_field].\n\n#Basic Properties\n\n- For any element $a$, $a \\leq 0$ if and only if $0 \\leq -a$.\n\n%%hidden(Show proof):\nFirst suppose $a \\leq 0$. Using the first axiom to add $-a$ to both sides, $a+(-a) = 0 \\leq -a$. For the other direction, suppose $0 \\leq -a$. Then $a \\leq -a+a = 0$.\n%%\n\n- The product of nonpositive elements is nonnegative.\n\n%%hidden(Show proof):\nSuppose $a$ and $b$ are nonpositive elements of $R$, that is $a,b \\leq 0$. From the first axiom, $a+(-a) = 0 \\leq -a$, and similarly $0 \\leq -b$. By the second axiom $0 \\leq -a \\otimes -b$. But $-a \\otimes -b = a \\otimes b$, so $0 \\leq a \\otimes b$.\n%%\n\n- The [-square] of any element is nonnegative.\n\n%%hidden(Show proof):\nLet $a$ be such an element. Since the ordering is total, either $0 \\leq a$ or $a \\leq 0$. In the first case, the second axiom gives $0 \\leq a^2$. In the second case, the previous property gives $0 \\leq a^2$, since $a$ is nonpositive. Either way we have $0 \\leq a^2$.\n%%\n\n- The additive [54p identity] $1 \\geq 0$. (Unless the ring is trivial, $1>0$.)\n\n%%hidden(Show proof):\nClearly $1 = 1 \\otimes 1$. So $1$ is a square, which means it's nonnegative.\n%%\n\n# Examples\n\nThe [4bc real numbers] are an ordered ring (in fact, an [-ordered_field]), as is any [-subring] of $\\mathbb R$, such as [4zq $\\mathbb Q$].\n\nThe [4zw complex numbers] are not an ordered ring, because there is no way to define the order between $0$ and $i$. Suppose that $0 \\le i$, then, we have $0 \\le i \\times i = -1$, which is false. Suppose that $i \\le 0$, then $0 = i + (-i) \\le 0 + (-i)$, but then we have $0 \\le (-i) \\times (-i) = -1$, which is again false. Alternatively, $i^2=-1$ is a square, so it must be nonnegative; that is, $0 \\leq -1$, which is a contradiction.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '2',
  maintainerCount: '2',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'DylanHendrickson',
    'JoeZeng'
  ],
  childIds: [],
  parentIds: [
    'algebraic_ring'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'start_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16042',
      pageId: 'ordered_ring',
      userId: 'DylanHendrickson',
      edit: '7',
      type: 'newEdit',
      createdAt: '2016-07-07 18:51:00',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16041',
      pageId: 'ordered_ring',
      userId: 'DylanHendrickson',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-07 18:49:22',
      auxPageId: 'start_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16040',
      pageId: 'ordered_ring',
      userId: 'DylanHendrickson',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-07-07 18:49:14',
      auxPageId: 'needs_summary_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15969',
      pageId: 'ordered_ring',
      userId: 'DylanHendrickson',
      edit: '6',
      type: 'newEdit',
      createdAt: '2016-07-07 14:08:06',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15965',
      pageId: 'ordered_ring',
      userId: 'DylanHendrickson',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-07-07 13:47:58',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15783',
      pageId: 'ordered_ring',
      userId: 'DylanHendrickson',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-07-06 20:48:13',
      auxPageId: 'needs_parent_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15781',
      pageId: 'ordered_ring',
      userId: 'DylanHendrickson',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-06 20:45:04',
      auxPageId: 'algebraic_ring',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15779',
      pageId: 'ordered_ring',
      userId: 'DylanHendrickson',
      edit: '0',
      type: 'deleteParent',
      createdAt: '2016-07-06 20:44:57',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15767',
      pageId: 'ordered_ring',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-06 20:21:13',
      auxPageId: 'needs_summary_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15766',
      pageId: 'ordered_ring',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-06 20:20:50',
      auxPageId: 'needs_parent_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15765',
      pageId: 'ordered_ring',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-06 20:20:15',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '2978',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '15721',
      pageId: 'ordered_ring',
      userId: 'DylanHendrickson',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-07-06 17:28:50',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15716',
      pageId: 'ordered_ring',
      userId: 'JoeZeng',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-07-06 16:15:31',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15710',
      pageId: 'ordered_ring',
      userId: 'DylanHendrickson',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-06 15:57:17',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}