{
localUrl: '../page/ordered_ring.html',
arbitalUrl: 'https://arbital.com/p/ordered_ring',
rawJsonUrl: '../raw/55j.json',
likeableId: '2967',
likeableType: 'page',
myLikeValue: '0',
likeCount: '2',
dislikeCount: '0',
likeScore: '2',
individualLikes: [
'EricBruylant',
'KevinClancy'
],
pageId: 'ordered_ring',
edit: '7',
editSummary: '',
prevEdit: '6',
currentEdit: '7',
wasPublished: 'true',
type: 'wiki',
title: 'Ordered ring',
clickbait: 'A ring with a total ordering compatible with its ring structure.',
textLength: '2533',
alias: 'ordered_ring',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'DylanHendrickson',
editCreatedAt: '2016-07-07 18:51:00',
pageCreatorId: 'DylanHendrickson',
pageCreatedAt: '2016-07-06 15:57:17',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '98',
text: '[summary: An **ordered ring** is a [-3gq] that is [540 totally ordered], where the ordering agrees with the ring operations. In particular, adding something to two elements doesn't change which of them is bigger, and the product of two [-positive] elements is positive.]\n\nAn **ordered ring** is a [-3gq] $R=(X,\\oplus,\\otimes)$ with a [540 total order] $\\leq$ compatible with the ring structure. Specifically, it must satisfy these axioms for any $a,b,c \\in X$:\n\n- If $a \\leq b$, then $a \\oplus c \\leq b \\oplus c$.\n- If $0 \\leq a$ and $0 \\leq b$, then $0 \\leq a \\otimes b$\n\nAn element $a$ of the ring is called "[-positive]" if $0<a$ and "[-negative]" if $a<0$. The second axiom, then, says that the product of nonnegative elements is nonnegative. \n\nAn ordered ring that is also a [481 field] is an [-ordered_field].\n\n#Basic Properties\n\n- For any element $a$, $a \\leq 0$ if and only if $0 \\leq -a$.\n\n%%hidden(Show proof):\nFirst suppose $a \\leq 0$. Using the first axiom to add $-a$ to both sides, $a+(-a) = 0 \\leq -a$. For the other direction, suppose $0 \\leq -a$. Then $a \\leq -a+a = 0$.\n%%\n\n- The product of nonpositive elements is nonnegative.\n\n%%hidden(Show proof):\nSuppose $a$ and $b$ are nonpositive elements of $R$, that is $a,b \\leq 0$. From the first axiom, $a+(-a) = 0 \\leq -a$, and similarly $0 \\leq -b$. By the second axiom $0 \\leq -a \\otimes -b$. But $-a \\otimes -b = a \\otimes b$, so $0 \\leq a \\otimes b$.\n%%\n\n- The [-square] of any element is nonnegative.\n\n%%hidden(Show proof):\nLet $a$ be such an element. Since the ordering is total, either $0 \\leq a$ or $a \\leq 0$. In the first case, the second axiom gives $0 \\leq a^2$. In the second case, the previous property gives $0 \\leq a^2$, since $a$ is nonpositive. Either way we have $0 \\leq a^2$.\n%%\n\n- The additive [54p identity] $1 \\geq 0$. (Unless the ring is trivial, $1>0$.)\n\n%%hidden(Show proof):\nClearly $1 = 1 \\otimes 1$. So $1$ is a square, which means it's nonnegative.\n%%\n\n# Examples\n\nThe [4bc real numbers] are an ordered ring (in fact, an [-ordered_field]), as is any [-subring] of $\\mathbb R$, such as [4zq $\\mathbb Q$].\n\nThe [4zw complex numbers] are not an ordered ring, because there is no way to define the order between $0$ and $i$. Suppose that $0 \\le i$, then, we have $0 \\le i \\times i = -1$, which is false. Suppose that $i \\le 0$, then $0 = i + (-i) \\le 0 + (-i)$, but then we have $0 \\le (-i) \\times (-i) = -1$, which is again false. Alternatively, $i^2=-1$ is a square, so it must be nonnegative; that is, $0 \\leq -1$, which is a contradiction.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '2',
maintainerCount: '2',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'DylanHendrickson',
'JoeZeng'
],
childIds: [],
parentIds: [
'algebraic_ring'
],
commentIds: [],
questionIds: [],
tagIds: [
'start_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16042',
pageId: 'ordered_ring',
userId: 'DylanHendrickson',
edit: '7',
type: 'newEdit',
createdAt: '2016-07-07 18:51:00',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16041',
pageId: 'ordered_ring',
userId: 'DylanHendrickson',
edit: '0',
type: 'newTag',
createdAt: '2016-07-07 18:49:22',
auxPageId: 'start_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16040',
pageId: 'ordered_ring',
userId: 'DylanHendrickson',
edit: '0',
type: 'deleteTag',
createdAt: '2016-07-07 18:49:14',
auxPageId: 'needs_summary_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15969',
pageId: 'ordered_ring',
userId: 'DylanHendrickson',
edit: '6',
type: 'newEdit',
createdAt: '2016-07-07 14:08:06',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15965',
pageId: 'ordered_ring',
userId: 'DylanHendrickson',
edit: '5',
type: 'newEdit',
createdAt: '2016-07-07 13:47:58',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15783',
pageId: 'ordered_ring',
userId: 'DylanHendrickson',
edit: '0',
type: 'deleteTag',
createdAt: '2016-07-06 20:48:13',
auxPageId: 'needs_parent_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15781',
pageId: 'ordered_ring',
userId: 'DylanHendrickson',
edit: '0',
type: 'newParent',
createdAt: '2016-07-06 20:45:04',
auxPageId: 'algebraic_ring',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15779',
pageId: 'ordered_ring',
userId: 'DylanHendrickson',
edit: '0',
type: 'deleteParent',
createdAt: '2016-07-06 20:44:57',
auxPageId: 'math',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15767',
pageId: 'ordered_ring',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-07-06 20:21:13',
auxPageId: 'needs_summary_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15766',
pageId: 'ordered_ring',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-07-06 20:20:50',
auxPageId: 'needs_parent_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15765',
pageId: 'ordered_ring',
userId: 'EricBruylant',
edit: '0',
type: 'newParent',
createdAt: '2016-07-06 20:20:15',
auxPageId: 'math',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '2978',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '15721',
pageId: 'ordered_ring',
userId: 'DylanHendrickson',
edit: '4',
type: 'newEdit',
createdAt: '2016-07-06 17:28:50',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15716',
pageId: 'ordered_ring',
userId: 'JoeZeng',
edit: '2',
type: 'newEdit',
createdAt: '2016-07-06 16:15:31',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15710',
pageId: 'ordered_ring',
userId: 'DylanHendrickson',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-06 15:57:17',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}