{
localUrl: '../page/axiom_of_choice_definition_intuitive.html',
arbitalUrl: 'https://arbital.com/p/axiom_of_choice_definition_intuitive',
rawJsonUrl: '../raw/6cb.json',
likeableId: '0',
likeableType: 'page',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
pageId: 'axiom_of_choice_definition_intuitive',
edit: '1',
editSummary: '',
prevEdit: '0',
currentEdit: '1',
wasPublished: 'true',
type: 'wiki',
title: 'Axiom of Choice Definition (Intuitive)',
clickbait: 'Definition of the Axiom of Choice, without using heavy mathematical notation.',
textLength: '2364',
alias: 'axiom_of_choice_definition_intuitive',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'MarkChimes',
editCreatedAt: '2016-10-10 21:11:14',
pageCreatorId: 'MarkChimes',
pageCreatedAt: '2016-10-10 21:11:14',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '61',
text: '#Getting the Heavy Maths out the Way: Definitions#\nIntuitively, the [-axiom_mathematics axiom] of choice states that, given a collection of *[-5zc non-empty]* [-3jz sets], there is a [-3jy function] which selects a single element from each of the sets. \n\nMore formally, given a set $X$ whose [-5xy elements] are only non-empty sets, there is a function \n$$\nf: X \\rightarrow \\bigcup_{Y \\in X} Y \n$$\nfrom $X$ to the [-5s8 union] of all the elements of $X$ such that, for each $Y \\in X$, the [-3lh image] of $Y$ under $f$ is an element of $Y$, i.e., $f(Y) \\in Y$. \n\nIn [-logical_notation logical notation],\n$$\n\\forall_X \n\\left( \n\\left[\\forall_{Y \\in X} Y \\not= \\emptyset \\right] \n\\Rightarrow \n\\left[\\exists \n\\left( f: X \\rightarrow \\bigcup_{Y \\in X} Y \\right)\n\\left(\\forall_{Y \\in X} \n\\exists_{y \\in Y} f(Y) = y \\right) \\right]\n\\right)\n$$\n\n#Axiom Unnecessary for Finite Collections of Sets#\nFor a [-5zy finite set] $X$ containing only [-5zy finite] non-empty sets, the axiom is actually provable (from the [-zermelo_fraenkel_axioms Zermelo-Fraenkel axioms] of set theory ZF), and hence does not need to be given as an [-axiom_mathematics axiom]. In fact, even for a finite collection of possibly infinite non-empty sets, the axiom of choice is provable (from ZF), using the [-axiom_of_induction axiom of induction]. In this case, the function can be explicitly described. For example, if the set $X$ contains only three, potentially infinite, non-empty sets $Y_1, Y_2, Y_3$, then the fact that they are non-empty means they each contain at least one element, say $y_1 \\in Y_1, y_2 \\in Y_2, y_3 \\in Y_3$. Then define $f$ by $f(Y_1) = y_1$, $f(Y_2) = y_2$ and $f(Y_3) = y_3$. This construction is permitted by the axioms ZF.\n\nThe problem comes in if $X$ contains an infinite number of non-empty sets. Let's assume $X$ contains a [-2w0 countable] number of sets $Y_1, Y_2, Y_3, \\ldots$. Then, again intuitively speaking, we can explicitly describe how $f$ might act on finitely many of the $Y$s (say the first $n$ for any natural number $n$), but we cannot describe it on all of them at once. \n\nTo understand this properly, one must understand what it means to be able to 'describe' or 'construct' a function $f$. This is described in more detail in the sections which follow. But first, a bit of background on why the axiom of choice is interesting to mathematicians.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'MarkChimes'
],
childIds: [],
parentIds: [
'axiom_of_choice',
'axiom_of_choice_definition_mathematical'
],
commentIds: [],
questionIds: [],
tagIds: [
'axiom_of_choice_definition_mathematical'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: 'axiom_of_choice_definition_mathematical',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '20024',
pageId: 'axiom_of_choice_definition_intuitive',
userId: 'MarkChimes',
edit: '0',
type: 'newParent',
createdAt: '2016-10-10 21:11:28',
auxPageId: 'axiom_of_choice_definition_mathematical',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '20021',
pageId: 'axiom_of_choice_definition_intuitive',
userId: 'MarkChimes',
edit: '0',
type: 'newParent',
createdAt: '2016-10-10 21:11:15',
auxPageId: 'axiom_of_choice',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '20022',
pageId: 'axiom_of_choice_definition_intuitive',
userId: 'MarkChimes',
edit: '0',
type: 'newTag',
createdAt: '2016-10-10 21:11:15',
auxPageId: 'axiom_of_choice_definition_mathematical',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '20019',
pageId: 'axiom_of_choice_definition_intuitive',
userId: 'MarkChimes',
edit: '1',
type: 'newEdit',
createdAt: '2016-10-10 21:11:14',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}