{
  localUrl: '../page/axiom_of_choice_definition_mathematical.html',
  arbitalUrl: 'https://arbital.com/p/axiom_of_choice_definition_mathematical',
  rawJsonUrl: '../raw/6c8.json',
  likeableId: '0',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '0',
  dislikeCount: '0',
  likeScore: '0',
  individualLikes: [],
  pageId: 'axiom_of_choice_definition_mathematical',
  edit: '2',
  editSummary: '',
  prevEdit: '1',
  currentEdit: '2',
  wasPublished: 'true',
  type: 'wiki',
  title: ' Axiom of Choice: Definition (Formal)',
  clickbait: 'Mathematically speaking, what does the Axiom of Choice say?',
  textLength: '2364',
  alias: 'axiom_of_choice_definition_mathematical',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'MarkChimes',
  editCreatedAt: '2016-10-10 21:04:45',
  pageCreatorId: 'MarkChimes',
  pageCreatedAt: '2016-10-10 20:26:18',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '117',
  text: '#Getting the Heavy Maths out the Way: Definitions#\nIntuitively, the [-axiom_mathematics axiom] of choice states that, given a collection of *[-5zc non-empty]* [-3jz sets], there is a [-3jy function] which selects a single element from each of the sets. \n\nMore formally, given a set $X$ whose [-5xy elements] are only non-empty sets, there is a function \n$$\nf: X \\rightarrow \\bigcup_{Y \\in X} Y \n$$\nfrom $X$ to the [-5s8 union] of all the elements of $X$ such that, for each $Y \\in X$, the [-3lh image] of $Y$ under $f$ is an element of $Y$, i.e., $f(Y) \\in Y$. \n\nIn [-logical_notation logical notation],\n$$\n\\forall_X \n\\left( \n\\left[\\forall_{Y \\in X} Y \\not=  \\emptyset \\right] \n\\Rightarrow \n\\left[\\exists \n\\left( f: X \\rightarrow \\bigcup_{Y \\in X} Y \\right)\n\\left(\\forall_{Y \\in X} \n\\exists_{y \\in Y} f(Y) = y \\right) \\right]\n\\right)\n$$\n\n#Axiom Unnecessary for Finite Collections of Sets#\nFor a [-5zy finite set]  $X$ containing only [-5zy finite] non-empty sets, the axiom is actually provable (from the [-zermelo_fraenkel_axioms Zermelo-Fraenkel axioms] of set theory ZF), and hence does not need to be given as an [-axiom_mathematics axiom]. In fact, even for a finite collection of possibly infinite non-empty sets, the axiom of choice is provable (from ZF), using the [-axiom_of_induction axiom of induction]. In this case, the function can be explicitly described. For example, if the set $X$ contains only three, potentially infinite, non-empty sets $Y_1, Y_2, Y_3$, then the fact that they are non-empty means they each contain at least one element, say $y_1 \\in Y_1, y_2 \\in Y_2, y_3 \\in Y_3$. Then define $f$ by $f(Y_1) = y_1$, $f(Y_2) = y_2$ and $f(Y_3) = y_3$. This construction is permitted by the axioms ZF.\n\nThe problem comes in if $X$ contains an infinite number of non-empty sets. Let's assume $X$ contains a [-2w0 countable] number of sets $Y_1, Y_2, Y_3, \\ldots$. Then, again intuitively speaking, we can explicitly describe how $f$ might act on finitely many of the $Y$s (say the first $n$ for any natural number $n$), but we cannot describe it on all of them at once. \n\nTo understand this properly, one must understand what it means to be able to 'describe' or 'construct' a function $f$. This is described in more detail in the sections which follow. But first, a bit of background on why the axiom of choice is interesting to mathematicians.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'MarkChimes'
  ],
  childIds: [
    'axiom_of_choice_definition_intuitive'
  ],
  parentIds: [
    'axiom_of_choice'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [],
  lensParentId: 'axiom_of_choice',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20023',
      pageId: 'axiom_of_choice_definition_mathematical',
      userId: 'MarkChimes',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-10-10 21:11:28',
      auxPageId: 'axiom_of_choice_definition_intuitive',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20017',
      pageId: 'axiom_of_choice_definition_mathematical',
      userId: 'MarkChimes',
      edit: '0',
      type: 'newAlias',
      createdAt: '2016-10-10 21:04:45',
      auxPageId: '',
      oldSettingsValue: 'axiom_of_choice_definition',
      newSettingsValue: 'axiom_of_choice_definition_mathematical'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20018',
      pageId: 'axiom_of_choice_definition_mathematical',
      userId: 'MarkChimes',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-10-10 21:04:45',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20006',
      pageId: 'axiom_of_choice_definition_mathematical',
      userId: 'MarkChimes',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-10-10 20:32:58',
      auxPageId: 'axiom_of_choice',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '20001',
      pageId: 'axiom_of_choice_definition_mathematical',
      userId: 'MarkChimes',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-10-10 20:26:18',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'true',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}