{
  localUrl: '../page/cyclic_group.html',
  arbitalUrl: 'https://arbital.com/p/cyclic_group',
  rawJsonUrl: '../raw/47y.json',
  likeableId: '2661',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '1',
  dislikeCount: '0',
  likeScore: '1',
  individualLikes: [
    'JaimeSevillaMolina'
  ],
  pageId: 'cyclic_group',
  edit: '6',
  editSummary: '',
  prevEdit: '5',
  currentEdit: '6',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Cyclic group',
  clickbait: 'Cyclic groups form one of the most simple classes of groups.',
  textLength: '1939',
  alias: 'cyclic_group',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-07-10 08:04:34',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-06-13 14:57:14',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '1',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '112',
  text: '[summary: The cyclic [3gd groups] are the simplest kind of group; they are the groups which can be made by simply "repeating a single element many times". For example, the rotations of a polygon.]\n\n[summary(technical):  A [3gd group] $G$ is **cyclic** if it has a single [generator_mathematics generator]: there is one [element_mathematics element] $g$ such that every element of the group is a [ power] of $g$.]\n\n# Definition\n\nA cyclic group is a group $(G, +)$ (hereafter abbreviated as simply $G$) with a single generator, in the sense that there is some $g \\in G$ such that for every $h \\in G$, there is $n \\in \\mathbb{Z}$ such that $h = g^n$, where we have written $g^n$ for $g + g + \\dots + g$ (with $n$ terms in the summand).\nThat is, "there is some element such that the group has nothing in it except powers of that element".\n\nWe may write $G = \\langle g \\rangle$ if $g$ is a generator of $G$.\n\n# Examples\n\n - $(\\mathbb{Z}, +) = \\langle 1 \\rangle = \\langle -1 \\rangle$\n - The group with two elements (say $\\{ e, g \\}$ with identity $e$ with the only possible group operation $g^2 = e$) is cyclic: it is generated by the non-identity element. Note that there is no requirement that the powers of $g$ be distinct: in this case, $g^2 = g^0 = e$.\n - The integers [modular_arithmetic modulo] $n$ form a cyclic group under addition, for any $n$: it is generated by $1$ (or, indeed, by $n-1$).\n - The [497 symmetric groups] $S_n$ for $n > 2$ are *not* cyclic. This can be deduced from the fact that they are not [3h2 abelian] (see below).\n\n# Properties\n\n## Cyclic groups are [3h2 abelian]\nSuppose $a, b \\in G$, and let $g$ be a generator of $G$. Suppose $a = g^i, b = g^j$. Then $ab = g^i g^j = g^{i+j} = g^{j+i} = g^j g^i = ba$.\n\n## Cyclic groups are [2w0 countable]\nThe elements of a cyclic group are nothing more nor less than $\\{ g^0, g^1, g^{-1}, g^2, g^{-2}, \\dots \\}$, which is an enumeration of the group (possibly with repeats).',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'true',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens',
    'EricBruylant',
    'MarkChimes'
  ],
  childIds: [
    'cyclic_group_intro_math_0'
  ],
  parentIds: [
    'group_mathematics'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [
    {
      id: '57',
      pageId: 'cyclic_group',
      lensId: 'cyclic_group_intro_math_0',
      lensIndex: '0',
      lensName: 'Intro (Math 0)',
      lensSubtitle: '',
      createdBy: '4c1',
      createdAt: '2016-07-01 04:40:54',
      updatedBy: '4c1',
      updatedAt: '2016-07-01 04:52:41'
    }
  ],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16357',
      pageId: 'cyclic_group',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-07-10 08:04:44',
      auxPageId: 'needs_summary_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3041',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '16355',
      pageId: 'cyclic_group',
      userId: 'PatrickStevens',
      edit: '6',
      type: 'newEdit',
      createdAt: '2016-07-10 08:04:34',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15024',
      pageId: 'cyclic_group',
      userId: 'MarkChimes',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-01 04:40:42',
      auxPageId: 'cyclic_group_intro_math_0',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15021',
      pageId: 'cyclic_group',
      userId: 'MarkChimes',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-07-01 04:19:27',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14439',
      pageId: 'cyclic_group',
      userId: 'EricBruylant',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-06-23 00:17:40',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'added links'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13924',
      pageId: 'cyclic_group',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequiredBy',
      createdAt: '2016-06-18 15:36:36',
      auxPageId: 'cauchy_theorem_on_subgroup_existence',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12626',
      pageId: 'cyclic_group',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-06-14 12:28:14',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12615',
      pageId: 'cyclic_group',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-06-14 11:17:02',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12558',
      pageId: 'cyclic_group',
      userId: 'EricBruylant',
      edit: '1',
      type: 'newTag',
      createdAt: '2016-06-13 17:14:28',
      auxPageId: 'needs_summary_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12542',
      pageId: 'cyclic_group',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newParent',
      createdAt: '2016-06-13 14:57:33',
      auxPageId: 'group_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12540',
      pageId: 'cyclic_group',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-13 14:57:14',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'true',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}