{ localUrl: '../page/cyclic_group.html', arbitalUrl: 'https://arbital.com/p/cyclic_group', rawJsonUrl: '../raw/47y.json', likeableId: '2661', likeableType: 'page', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [ 'JaimeSevillaMolina' ], pageId: 'cyclic_group', edit: '6', editSummary: '', prevEdit: '5', currentEdit: '6', wasPublished: 'true', type: 'wiki', title: 'Cyclic group', clickbait: 'Cyclic groups form one of the most simple classes of groups.', textLength: '1939', alias: 'cyclic_group', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'PatrickStevens', editCreatedAt: '2016-07-10 08:04:34', pageCreatorId: 'PatrickStevens', pageCreatedAt: '2016-06-13 14:57:14', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '1', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '112', text: '[summary: The cyclic [3gd groups] are the simplest kind of group; they are the groups which can be made by simply "repeating a single element many times". For example, the rotations of a polygon.]\n\n[summary(technical): A [3gd group] $G$ is **cyclic** if it has a single [generator_mathematics generator]: there is one [element_mathematics element] $g$ such that every element of the group is a [ power] of $g$.]\n\n# Definition\n\nA cyclic group is a group $(G, +)$ (hereafter abbreviated as simply $G$) with a single generator, in the sense that there is some $g \\in G$ such that for every $h \\in G$, there is $n \\in \\mathbb{Z}$ such that $h = g^n$, where we have written $g^n$ for $g + g + \\dots + g$ (with $n$ terms in the summand).\nThat is, "there is some element such that the group has nothing in it except powers of that element".\n\nWe may write $G = \\langle g \\rangle$ if $g$ is a generator of $G$.\n\n# Examples\n\n - $(\\mathbb{Z}, +) = \\langle 1 \\rangle = \\langle -1 \\rangle$\n - The group with two elements (say $\\{ e, g \\}$ with identity $e$ with the only possible group operation $g^2 = e$) is cyclic: it is generated by the non-identity element. Note that there is no requirement that the powers of $g$ be distinct: in this case, $g^2 = g^0 = e$.\n - The integers [modular_arithmetic modulo] $n$ form a cyclic group under addition, for any $n$: it is generated by $1$ (or, indeed, by $n-1$).\n - The [497 symmetric groups] $S_n$ for $n > 2$ are *not* cyclic. This can be deduced from the fact that they are not [3h2 abelian] (see below).\n\n# Properties\n\n## Cyclic groups are [3h2 abelian]\nSuppose $a, b \\in G$, and let $g$ be a generator of $G$. Suppose $a = g^i, b = g^j$. Then $ab = g^i g^j = g^{i+j} = g^{j+i} = g^j g^i = ba$.\n\n## Cyclic groups are [2w0 countable]\nThe elements of a cyclic group are nothing more nor less than $\\{ g^0, g^1, g^{-1}, g^2, g^{-2}, \\dots \\}$, which is an enumeration of the group (possibly with repeats).', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'true', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'PatrickStevens', 'EricBruylant', 'MarkChimes' ], childIds: [ 'cyclic_group_intro_math_0' ], parentIds: [ 'group_mathematics' ], commentIds: [], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [ { id: '57', pageId: 'cyclic_group', lensId: 'cyclic_group_intro_math_0', lensIndex: '0', lensName: 'Intro (Math 0)', lensSubtitle: '', createdBy: '4c1', createdAt: '2016-07-01 04:40:54', updatedBy: '4c1', updatedAt: '2016-07-01 04:52:41' } ], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16357', pageId: 'cyclic_group', userId: 'PatrickStevens', edit: '0', type: 'deleteTag', createdAt: '2016-07-10 08:04:44', auxPageId: 'needs_summary_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3041', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '16355', pageId: 'cyclic_group', userId: 'PatrickStevens', edit: '6', type: 'newEdit', createdAt: '2016-07-10 08:04:34', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15024', pageId: 'cyclic_group', userId: 'MarkChimes', edit: '0', type: 'newChild', createdAt: '2016-07-01 04:40:42', auxPageId: 'cyclic_group_intro_math_0', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15021', pageId: 'cyclic_group', userId: 'MarkChimes', edit: '5', type: 'newEdit', createdAt: '2016-07-01 04:19:27', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14439', pageId: 'cyclic_group', userId: 'EricBruylant', edit: '4', type: 'newEdit', createdAt: '2016-06-23 00:17:40', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'added links' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13924', pageId: 'cyclic_group', userId: 'PatrickStevens', edit: '0', type: 'newRequiredBy', createdAt: '2016-06-18 15:36:36', auxPageId: 'cauchy_theorem_on_subgroup_existence', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12626', pageId: 'cyclic_group', userId: 'PatrickStevens', edit: '3', type: 'newEdit', createdAt: '2016-06-14 12:28:14', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12615', pageId: 'cyclic_group', userId: 'PatrickStevens', edit: '2', type: 'newEdit', createdAt: '2016-06-14 11:17:02', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12558', pageId: 'cyclic_group', userId: 'EricBruylant', edit: '1', type: 'newTag', createdAt: '2016-06-13 17:14:28', auxPageId: 'needs_summary_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12542', pageId: 'cyclic_group', userId: 'PatrickStevens', edit: '1', type: 'newParent', createdAt: '2016-06-13 14:57:33', auxPageId: 'group_mathematics', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12540', pageId: 'cyclic_group', userId: 'PatrickStevens', edit: '1', type: 'newEdit', createdAt: '2016-06-13 14:57:14', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'true', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }