{
localUrl: '../page/cyclic_group.html',
arbitalUrl: 'https://arbital.com/p/cyclic_group',
rawJsonUrl: '../raw/47y.json',
likeableId: '2661',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'JaimeSevillaMolina'
],
pageId: 'cyclic_group',
edit: '6',
editSummary: '',
prevEdit: '5',
currentEdit: '6',
wasPublished: 'true',
type: 'wiki',
title: 'Cyclic group',
clickbait: 'Cyclic groups form one of the most simple classes of groups.',
textLength: '1939',
alias: 'cyclic_group',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'PatrickStevens',
editCreatedAt: '2016-07-10 08:04:34',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-06-13 14:57:14',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '1',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '112',
text: '[summary: The cyclic [3gd groups] are the simplest kind of group; they are the groups which can be made by simply "repeating a single element many times". For example, the rotations of a polygon.]\n\n[summary(technical): A [3gd group] $G$ is **cyclic** if it has a single [generator_mathematics generator]: there is one [element_mathematics element] $g$ such that every element of the group is a [ power] of $g$.]\n\n# Definition\n\nA cyclic group is a group $(G, +)$ (hereafter abbreviated as simply $G$) with a single generator, in the sense that there is some $g \\in G$ such that for every $h \\in G$, there is $n \\in \\mathbb{Z}$ such that $h = g^n$, where we have written $g^n$ for $g + g + \\dots + g$ (with $n$ terms in the summand).\nThat is, "there is some element such that the group has nothing in it except powers of that element".\n\nWe may write $G = \\langle g \\rangle$ if $g$ is a generator of $G$.\n\n# Examples\n\n - $(\\mathbb{Z}, +) = \\langle 1 \\rangle = \\langle -1 \\rangle$\n - The group with two elements (say $\\{ e, g \\}$ with identity $e$ with the only possible group operation $g^2 = e$) is cyclic: it is generated by the non-identity element. Note that there is no requirement that the powers of $g$ be distinct: in this case, $g^2 = g^0 = e$.\n - The integers [modular_arithmetic modulo] $n$ form a cyclic group under addition, for any $n$: it is generated by $1$ (or, indeed, by $n-1$).\n - The [497 symmetric groups] $S_n$ for $n > 2$ are *not* cyclic. This can be deduced from the fact that they are not [3h2 abelian] (see below).\n\n# Properties\n\n## Cyclic groups are [3h2 abelian]\nSuppose $a, b \\in G$, and let $g$ be a generator of $G$. Suppose $a = g^i, b = g^j$. Then $ab = g^i g^j = g^{i+j} = g^{j+i} = g^j g^i = ba$.\n\n## Cyclic groups are [2w0 countable]\nThe elements of a cyclic group are nothing more nor less than $\\{ g^0, g^1, g^{-1}, g^2, g^{-2}, \\dots \\}$, which is an enumeration of the group (possibly with repeats).',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'true',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens',
'EricBruylant',
'MarkChimes'
],
childIds: [
'cyclic_group_intro_math_0'
],
parentIds: [
'group_mathematics'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [
{
id: '57',
pageId: 'cyclic_group',
lensId: 'cyclic_group_intro_math_0',
lensIndex: '0',
lensName: 'Intro (Math 0)',
lensSubtitle: '',
createdBy: '4c1',
createdAt: '2016-07-01 04:40:54',
updatedBy: '4c1',
updatedAt: '2016-07-01 04:52:41'
}
],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16357',
pageId: 'cyclic_group',
userId: 'PatrickStevens',
edit: '0',
type: 'deleteTag',
createdAt: '2016-07-10 08:04:44',
auxPageId: 'needs_summary_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3041',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '16355',
pageId: 'cyclic_group',
userId: 'PatrickStevens',
edit: '6',
type: 'newEdit',
createdAt: '2016-07-10 08:04:34',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15024',
pageId: 'cyclic_group',
userId: 'MarkChimes',
edit: '0',
type: 'newChild',
createdAt: '2016-07-01 04:40:42',
auxPageId: 'cyclic_group_intro_math_0',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15021',
pageId: 'cyclic_group',
userId: 'MarkChimes',
edit: '5',
type: 'newEdit',
createdAt: '2016-07-01 04:19:27',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14439',
pageId: 'cyclic_group',
userId: 'EricBruylant',
edit: '4',
type: 'newEdit',
createdAt: '2016-06-23 00:17:40',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: 'added links'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13924',
pageId: 'cyclic_group',
userId: 'PatrickStevens',
edit: '0',
type: 'newRequiredBy',
createdAt: '2016-06-18 15:36:36',
auxPageId: 'cauchy_theorem_on_subgroup_existence',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12626',
pageId: 'cyclic_group',
userId: 'PatrickStevens',
edit: '3',
type: 'newEdit',
createdAt: '2016-06-14 12:28:14',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12615',
pageId: 'cyclic_group',
userId: 'PatrickStevens',
edit: '2',
type: 'newEdit',
createdAt: '2016-06-14 11:17:02',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12558',
pageId: 'cyclic_group',
userId: 'EricBruylant',
edit: '1',
type: 'newTag',
createdAt: '2016-06-13 17:14:28',
auxPageId: 'needs_summary_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12542',
pageId: 'cyclic_group',
userId: 'PatrickStevens',
edit: '1',
type: 'newParent',
createdAt: '2016-06-13 14:57:33',
auxPageId: 'group_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12540',
pageId: 'cyclic_group',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-06-13 14:57:14',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'true',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}