{ localUrl: '../page/cauchy_theorem_on_subgroup_existence.html', arbitalUrl: 'https://arbital.com/p/cauchy_theorem_on_subgroup_existence', rawJsonUrl: '../raw/4l6.json', likeableId: '0', likeableType: 'page', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], pageId: 'cauchy_theorem_on_subgroup_existence', edit: '5', editSummary: '', prevEdit: '4', currentEdit: '5', wasPublished: 'true', type: 'wiki', title: 'Cauchy's theorem on subgroup existence', clickbait: 'Cauchy's theorem is a useful condition for the existence of cyclic subgroups of finite groups.', textLength: '2975', alias: 'cauchy_theorem_on_subgroup_existence', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'PatrickStevens', editCreatedAt: '2016-06-30 14:08:56', pageCreatorId: 'PatrickStevens', pageCreatedAt: '2016-06-18 15:36:35', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '1', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '114', text: 'Cauchy's theorem states that if $G$ is a finite [-3gd] and $p$ is a [4mf prime] dividing $|G|$ the [3gg order] of $G$, then $G$ has a subgroup of order $p$. Such a subgroup is necessarily [47y cyclic] ([4jh proof]).\n\n# Proof\n\nThe proof involves basically a single magic idea: from thin air, we pluck the definition of the following set.\n\nLet $$X = \\{ (x_1, x_2, \\dots, x_p) : x_1 x_2 \\dots x_p = e \\}$$ the collection of $p$-[-tuple]s of elements of the group such that the group operation applied to the tuple yields the identity.\nObserve that $X$ is not empty, because it contains the tuple $(e, e, \\dots, e)$.\n\nNow, the cyclic group $C_p$ of order $p$ [3t9 acts] on $X$ as follows: $$(h, (x_1, \\dots, x_p)) \\mapsto (x_2, x_3, \\dots, x_p, x_1)$$ where $h$ is the generator of $C_p$.\nSo a general element $h^i$ acts on $X$ by sending $(x_1, \\dots, x_p)$ to $(x_{i+1}, x_{i+2} , \\dots, x_p, x_1, \\dots, x_i)$.\n\nThis is indeed a group action (exercise).\n\n%%hidden(Show solution):\n\n- It certainly outputs elements of $X$, because if $x_1 x_2 \\dots x_p = e$, then $$x_{i+1} x_{i+2} \\dots x_p x_1 \\dots x_i = (x_1 \\dots x_i)^{-1} (x_1 \\dots x_p) (x_1 \\dots x_i) = (x_1 \\dots x_i)^{-1} e (x_1 \\dots x_i) = e$$\n- The identity acts trivially on the set: since rotating a tuple round by $0$ places is the same as not permuting it at all.\n- $(h^i h^j)(x_1, x_2, \\dots, x_p) = h^i(h^j(x_1, x_2, \\dots, x_p))$ because the left-hand side has performed $h^{i+j}$ which rotates by $i+j$ places, while the right-hand side has rotated by first $j$ and then $i$ places and hence $i+j$ in total.\n%%\n\nNow, fix $\\bar{x} = (x_1, \\dots, x_p) \\in X$.\n\nBy the [4l8 Orbit-Stabiliser theorem], the [4v8 orbit] $\\mathrm{Orb}_{C_p}(\\bar{x})$ of $\\bar{x}$ divides $|C_p| = p$, so (since $p$ is prime) it is either $1$ or $p$ for every $\\bar{x} \\in X$.\n\nNow, what is the size of the set $X$?\n%%hidden(Show solution):\nIt is $|G|^{p-1}$.\n\nIndeed, a single $p$-tuple in $X$ is specified precisely by its first $p$ elements; then the final element is constrained to be $x_p = (x_1 \\dots x_{p-1})^{-1}$.\n%%\n\nAlso, the orbits of $C_p$ acting on $X$ partition $X$ ([4mg proof]).\nSince $p$ divides $|G|$, we must have $p$ dividing $|G|^{p-1} = |X|$.\nTherefore since $|\\mathrm{Orb}_{C_p}((e, e, \\dots, e))| = 1$, there must be at least $p-1$ other orbits of size $1$, because each orbit has size $p$ or $1$: if we had fewer than $p-1$ other orbits of size $1$, then there would be at least $1$ but strictly fewer than $p$ orbits of size $1$, and all the remaining orbits would have to be of size $p$, contradicting that $p \\mid |X|$.\n[todo: picture of class equation]\n\nHence there is indeed another orbit of size $1$; say it is the singleton $\\{ \\bar{x} \\}$ where $\\bar{x} = (x_1, \\dots, x_p)$.\n\nNow $C_p$ acts by cycling $\\bar{x}$ round, and we know that doing so does not change $\\bar{x}$, so it must be the case that all the $x_i$ are equal; hence $(x, x, \\dots, x) \\in X$ and so $x^p = e$ by definition of $X$.', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'true', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'PatrickStevens' ], childIds: [ 'cauchy_theorem_on_subgroup_existence_intuitive' ], parentIds: [ 'group_mathematics' ], commentIds: [], questionIds: [], tagIds: [ 'proof_meta_tag' ], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [ { id: '4256', parentId: 'cyclic_group', childId: 'cauchy_theorem_on_subgroup_existence', type: 'requirement', creatorId: 'PatrickStevens', createdAt: '2016-06-18 15:12:56', level: '1', isStrong: 'false', everPublished: 'true' }, { id: '4258', parentId: 'group_action', childId: 'cauchy_theorem_on_subgroup_existence', type: 'requirement', creatorId: 'PatrickStevens', createdAt: '2016-06-18 15:23:02', level: '1', isStrong: 'false', everPublished: 'true' }, { id: '4279', parentId: 'orbit_stabiliser_theorem', childId: 'cauchy_theorem_on_subgroup_existence', type: 'requirement', creatorId: 'PatrickStevens', createdAt: '2016-06-19 17:29:27', level: '1', isStrong: 'false', everPublished: 'true' }, { id: '4302', parentId: 'prime_number', childId: 'cauchy_theorem_on_subgroup_existence', type: 'requirement', creatorId: 'PatrickStevens', createdAt: '2016-06-20 08:48:07', level: '1', isStrong: 'false', everPublished: 'true' } ], subjects: [], lenses: [ { id: '55', pageId: 'cauchy_theorem_on_subgroup_existence', lensId: 'cauchy_theorem_on_subgroup_existence_intuitive', lensIndex: '0', lensName: 'Intuitive version', lensSubtitle: '', createdBy: '267', createdAt: '2016-06-30 15:52:00', updatedBy: '267', updatedAt: '2016-06-30 15:52:23' } ], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15159', pageId: 'cauchy_theorem_on_subgroup_existence', userId: 'PatrickStevens', edit: '0', type: 'newTag', createdAt: '2016-07-03 08:08:13', auxPageId: 'proof_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14965', pageId: 'cauchy_theorem_on_subgroup_existence', userId: 'PatrickStevens', edit: '0', type: 'newChild', createdAt: '2016-06-30 15:51:58', auxPageId: 'cauchy_theorem_on_subgroup_existence_intuitive', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14958', pageId: 'cauchy_theorem_on_subgroup_existence', userId: 'PatrickStevens', edit: '5', type: 'newEdit', createdAt: '2016-06-30 14:08:56', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14085', pageId: 'cauchy_theorem_on_subgroup_existence', userId: 'PatrickStevens', edit: '4', type: 'newEdit', createdAt: '2016-06-20 08:48:09', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14084', pageId: 'cauchy_theorem_on_subgroup_existence', userId: 'PatrickStevens', edit: '0', type: 'newRequirement', createdAt: '2016-06-20 08:48:08', auxPageId: 'prime_number', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14001', pageId: 'cauchy_theorem_on_subgroup_existence', userId: 'PatrickStevens', edit: '3', type: 'newEdit', createdAt: '2016-06-19 17:29:31', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14000', pageId: 'cauchy_theorem_on_subgroup_existence', userId: 'PatrickStevens', edit: '0', type: 'newRequirement', createdAt: '2016-06-19 17:29:27', auxPageId: 'orbit_stabiliser_theorem', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13931', pageId: 'cauchy_theorem_on_subgroup_existence', userId: 'PatrickStevens', edit: '0', type: 'newRequiredBy', createdAt: '2016-06-18 15:39:28', auxPageId: 'alternating_group_five_is_simple', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13930', pageId: 'cauchy_theorem_on_subgroup_existence', userId: 'PatrickStevens', edit: '2', type: 'newEdit', createdAt: '2016-06-18 15:36:47', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13927', pageId: 'cauchy_theorem_on_subgroup_existence', userId: 'PatrickStevens', edit: '0', type: 'newParent', createdAt: '2016-06-18 15:36:37', auxPageId: 'group_mathematics', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13929', pageId: 'cauchy_theorem_on_subgroup_existence', userId: 'PatrickStevens', edit: '0', type: 'newRequirement', createdAt: '2016-06-18 15:36:37', auxPageId: 'group_action', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13925', pageId: 'cauchy_theorem_on_subgroup_existence', userId: 'PatrickStevens', edit: '0', type: 'newRequirement', createdAt: '2016-06-18 15:36:36', auxPageId: 'cyclic_group', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13923', pageId: 'cauchy_theorem_on_subgroup_existence', userId: 'PatrickStevens', edit: '1', type: 'newEdit', createdAt: '2016-06-18 15:36:35', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'true', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }