{
  localUrl: '../page/cauchy_theorem_on_subgroup_existence.html',
  arbitalUrl: 'https://arbital.com/p/cauchy_theorem_on_subgroup_existence',
  rawJsonUrl: '../raw/4l6.json',
  likeableId: '0',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '0',
  dislikeCount: '0',
  likeScore: '0',
  individualLikes: [],
  pageId: 'cauchy_theorem_on_subgroup_existence',
  edit: '5',
  editSummary: '',
  prevEdit: '4',
  currentEdit: '5',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Cauchy's theorem on subgroup existence',
  clickbait: 'Cauchy's theorem is a useful condition for the existence of cyclic subgroups of finite groups.',
  textLength: '2975',
  alias: 'cauchy_theorem_on_subgroup_existence',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-06-30 14:08:56',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-06-18 15:36:35',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '1',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '114',
  text: 'Cauchy's theorem states that if $G$ is a finite [-3gd] and $p$ is a [4mf prime] dividing $|G|$ the [3gg order] of $G$, then $G$ has a subgroup of order $p$. Such a subgroup is necessarily [47y cyclic] ([4jh proof]).\n\n# Proof\n\nThe proof involves basically a single magic idea: from thin air, we pluck the definition of the following set.\n\nLet $$X = \\{ (x_1, x_2, \\dots, x_p) : x_1 x_2 \\dots x_p = e \\}$$ the collection of $p$-[-tuple]s of elements of the group such that the group operation applied to the tuple yields the identity.\nObserve that $X$ is not empty, because it contains the tuple $(e, e, \\dots, e)$.\n\nNow, the cyclic group $C_p$ of order $p$ [3t9 acts] on $X$ as follows: $$(h, (x_1, \\dots, x_p)) \\mapsto (x_2, x_3, \\dots, x_p, x_1)$$ where $h$ is the generator of $C_p$.\nSo a general element $h^i$ acts on $X$ by sending $(x_1, \\dots, x_p)$ to $(x_{i+1}, x_{i+2} , \\dots, x_p, x_1, \\dots, x_i)$.\n\nThis is indeed a group action (exercise).\n\n%%hidden(Show solution):\n\n- It certainly outputs elements of $X$, because if $x_1 x_2 \\dots x_p = e$, then $$x_{i+1} x_{i+2} \\dots x_p x_1 \\dots x_i = (x_1 \\dots x_i)^{-1} (x_1 \\dots x_p) (x_1 \\dots x_i) = (x_1 \\dots x_i)^{-1} e (x_1 \\dots x_i) = e$$\n- The identity acts trivially on the set: since rotating a tuple round by $0$ places is the same as not permuting it at all.\n- $(h^i h^j)(x_1, x_2, \\dots, x_p) = h^i(h^j(x_1, x_2, \\dots, x_p))$ because the left-hand side has performed $h^{i+j}$ which rotates by $i+j$ places, while the right-hand side has rotated by first $j$ and then $i$ places and hence $i+j$ in total.\n%%\n\nNow, fix $\\bar{x} = (x_1, \\dots, x_p) \\in X$.\n\nBy the [4l8 Orbit-Stabiliser theorem], the [4v8 orbit] $\\mathrm{Orb}_{C_p}(\\bar{x})$ of $\\bar{x}$ divides $|C_p| = p$, so (since $p$ is prime) it is either $1$ or $p$ for every $\\bar{x} \\in X$.\n\nNow, what is the size of the set $X$?\n%%hidden(Show solution):\nIt is $|G|^{p-1}$.\n\nIndeed, a single $p$-tuple in $X$ is specified precisely by its first $p$ elements; then the final element is constrained to be $x_p = (x_1 \\dots x_{p-1})^{-1}$.\n%%\n\nAlso, the orbits of $C_p$ acting on $X$ partition $X$ ([4mg proof]).\nSince $p$ divides $|G|$, we must have $p$ dividing $|G|^{p-1} = |X|$.\nTherefore since $|\\mathrm{Orb}_{C_p}((e, e, \\dots, e))| = 1$, there must be at least $p-1$ other orbits of size $1$, because each orbit has size $p$ or $1$: if we had fewer than $p-1$ other orbits of size $1$, then there would be at least $1$ but strictly fewer than $p$ orbits of size $1$, and all the remaining orbits would have to be of size $p$, contradicting that $p \\mid |X|$.\n[todo: picture of class equation]\n\nHence there is indeed another orbit of size $1$; say it is the singleton $\\{ \\bar{x} \\}$ where $\\bar{x} = (x_1, \\dots, x_p)$.\n\nNow $C_p$ acts by cycling $\\bar{x}$ round, and we know that doing so does not change $\\bar{x}$, so it must be the case that all the $x_i$ are equal; hence $(x, x, \\dots, x) \\in X$ and so $x^p = e$ by definition of $X$.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'true',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens'
  ],
  childIds: [
    'cauchy_theorem_on_subgroup_existence_intuitive'
  ],
  parentIds: [
    'group_mathematics'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'proof_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '4256',
      parentId: 'cyclic_group',
      childId: 'cauchy_theorem_on_subgroup_existence',
      type: 'requirement',
      creatorId: 'PatrickStevens',
      createdAt: '2016-06-18 15:12:56',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    },
    {
      id: '4258',
      parentId: 'group_action',
      childId: 'cauchy_theorem_on_subgroup_existence',
      type: 'requirement',
      creatorId: 'PatrickStevens',
      createdAt: '2016-06-18 15:23:02',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    },
    {
      id: '4279',
      parentId: 'orbit_stabiliser_theorem',
      childId: 'cauchy_theorem_on_subgroup_existence',
      type: 'requirement',
      creatorId: 'PatrickStevens',
      createdAt: '2016-06-19 17:29:27',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    },
    {
      id: '4302',
      parentId: 'prime_number',
      childId: 'cauchy_theorem_on_subgroup_existence',
      type: 'requirement',
      creatorId: 'PatrickStevens',
      createdAt: '2016-06-20 08:48:07',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [],
  lenses: [
    {
      id: '55',
      pageId: 'cauchy_theorem_on_subgroup_existence',
      lensId: 'cauchy_theorem_on_subgroup_existence_intuitive',
      lensIndex: '0',
      lensName: 'Intuitive version',
      lensSubtitle: '',
      createdBy: '267',
      createdAt: '2016-06-30 15:52:00',
      updatedBy: '267',
      updatedAt: '2016-06-30 15:52:23'
    }
  ],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15159',
      pageId: 'cauchy_theorem_on_subgroup_existence',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-03 08:08:13',
      auxPageId: 'proof_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14965',
      pageId: 'cauchy_theorem_on_subgroup_existence',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-06-30 15:51:58',
      auxPageId: 'cauchy_theorem_on_subgroup_existence_intuitive',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14958',
      pageId: 'cauchy_theorem_on_subgroup_existence',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-06-30 14:08:56',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14085',
      pageId: 'cauchy_theorem_on_subgroup_existence',
      userId: 'PatrickStevens',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-06-20 08:48:09',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14084',
      pageId: 'cauchy_theorem_on_subgroup_existence',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-06-20 08:48:08',
      auxPageId: 'prime_number',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14001',
      pageId: 'cauchy_theorem_on_subgroup_existence',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-06-19 17:29:31',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14000',
      pageId: 'cauchy_theorem_on_subgroup_existence',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-06-19 17:29:27',
      auxPageId: 'orbit_stabiliser_theorem',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13931',
      pageId: 'cauchy_theorem_on_subgroup_existence',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequiredBy',
      createdAt: '2016-06-18 15:39:28',
      auxPageId: 'alternating_group_five_is_simple',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13930',
      pageId: 'cauchy_theorem_on_subgroup_existence',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-06-18 15:36:47',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13927',
      pageId: 'cauchy_theorem_on_subgroup_existence',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-06-18 15:36:37',
      auxPageId: 'group_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13929',
      pageId: 'cauchy_theorem_on_subgroup_existence',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-06-18 15:36:37',
      auxPageId: 'group_action',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13925',
      pageId: 'cauchy_theorem_on_subgroup_existence',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-06-18 15:36:36',
      auxPageId: 'cyclic_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13923',
      pageId: 'cauchy_theorem_on_subgroup_existence',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-18 15:36:35',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'true',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}