{
localUrl: '../page/disjoint_cycles_commute_symmetric_group.html',
arbitalUrl: 'https://arbital.com/p/disjoint_cycles_commute_symmetric_group',
rawJsonUrl: '../raw/49g.json',
likeableId: '0',
likeableType: 'page',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
pageId: 'disjoint_cycles_commute_symmetric_group',
edit: '2',
editSummary: '',
prevEdit: '1',
currentEdit: '2',
wasPublished: 'true',
type: 'wiki',
title: 'Disjoint cycles commute in symmetric groups',
clickbait: 'In cycle notation, if two cycles are disjoint, then they commute.',
textLength: '1366',
alias: 'disjoint_cycles_commute_symmetric_group',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'PatrickStevens',
editCreatedAt: '2016-06-14 16:53:51',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-06-14 16:23:56',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '32',
text: '[summary: In a symmetric group, if we are applying a collection of permutations which are each disjoint cycles, we get the same result no matter the order in which we perform the cycles.]\n\nConsider two [49f cycles] $(a_1 a_2 \\dots a_k)$ and $(b_1 b_2 \\dots b_m)$ in the [-497] $S_n$, where all the $a_i, b_j$ are distinct.\n\nThen it is the case that the following two elements of $S_n$ are equal:\n\n- $\\sigma$, which is obtained by first performing the permutation notated by $(a_1 a_2 \\dots a_k)$ and then by performing the permutation notated by $(b_1 b_2 \\dots b_m)$\n- $\\tau$, which is obtained by first performing the permutation notated by $(b_1 b_2 \\dots b_m)$ and then by performing the permutation notated by $(a_1 a_2 \\dots a_k)$\n\nIndeed, $\\sigma(a_i) = (b_1 b_2 \\dots b_m)[(a_1 a_2 \\dots a_k)(a_i)] = (b_1 b_2 \\dots b_m)(a_{i+1}) = a_{i+1}$ (taking $a_{k+1}$ to be $a_1$), while $\\tau(a_i) = (a_1 a_2 \\dots a_k)[(b_1 b_2 \\dots b_m)(a_i)] = (a_1 a_2 \\dots a_k)(a_i) = a_{i+1}$, so they agree on elements of $(a_1 a_2 \\dots a_k)$.\nSimilarly they agree on elements of $(b_1 b_2 \\dots b_m)$; and they both do not move anything which is not an $a_i$ or a $b_j$.\nHence they are the same permutation: they act in the same way on all elements of $\\{1,2,\\dots, n\\}$.\n\nThis reasoning generalises to more than two disjoint cycles, to show that disjoint cycles commute.\n',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens'
],
childIds: [],
parentIds: [
'symmetric_group'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12688',
pageId: 'disjoint_cycles_commute_symmetric_group',
userId: 'PatrickStevens',
edit: '2',
type: 'newEdit',
createdAt: '2016-06-14 16:53:51',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12663',
pageId: 'disjoint_cycles_commute_symmetric_group',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-06-14 16:23:56',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12661',
pageId: 'disjoint_cycles_commute_symmetric_group',
userId: 'PatrickStevens',
edit: '1',
type: 'newParent',
createdAt: '2016-06-14 16:13:18',
auxPageId: 'symmetric_group',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}