{
  localUrl: '../page/symmetric_group.html',
  arbitalUrl: 'https://arbital.com/p/symmetric_group',
  rawJsonUrl: '../raw/497.json',
  likeableId: '2669',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '2',
  dislikeCount: '0',
  likeScore: '2',
  individualLikes: [
    'EricBruylant',
    'JaimeSevillaMolina'
  ],
  pageId: 'symmetric_group',
  edit: '17',
  editSummary: '',
  prevEdit: '16',
  currentEdit: '17',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Symmetric group',
  clickbait: 'The symmetric groups form the fundamental link between group theory and the notion of symmetry.',
  textLength: '3295',
  alias: 'symmetric_group',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-06-17 15:13:31',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-06-14 12:14:52',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '120',
  text: 'The notion that group theory captures the idea of "symmetry" derives from the notion of the symmetric group, and the very important theorem due to Cayley that every group is a subgroup of a symmetric group.\n\n# Definition\n\nLet $X$ be a [-3jz]. A [499 bijection] $f: X \\to X$ is a *permutation* of $X$.\nWrite $\\mathrm{Sym}(X)$ for the set of permutations of the set $X$ (so its elements are functions).\n\nThen $\\mathrm{Sym}(X)$ is a group under the operation of composition of functions; it is the *symmetric group on $X$*.\n(It is also written $\\mathrm{Aut}(X)$, for the *automorphism group*.)\n\nWe write $S_n$ for $\\mathrm{Sym}(\\{ 1,2, \\dots, n\\})$, the *symmetric group on $n$ elements*.\n\n# Elements of $S_n$\n\nWe can represent a permutation of $\\{1,2,\\dots, n\\}$ in two different ways, each of which is useful in different situations.\n\n## Double-row notation\n\nLet $\\sigma \\in S_n$, so $\\sigma$ is a function $\\{1,2,\\dots,n\\} \\to \\{1,2,\\dots,n\\}$.\nThen we write $$\\begin{pmatrix}1 & 2 & \\dots & n \\\\ \\sigma(1) & \\sigma(2) & \\dots & \\sigma(n) \\\\ \\end{pmatrix}$$\nfor $\\sigma$.\nThis has the advantage that it is immediately clear where every element goes, but the disadvantage that it is quite hard to see the properties of an element when it is written in double-row notation (for example, "$\\sigma$ cycles round five elements" is hard to spot at a glance), and it is not very compact.\n\n## Cycle notation\n\n[49f Cycle notation] is a different notation, which has the advantage that it is easy to determine an element's order and to get a general sense of what the element does.\nEvery element of $S_n$ [49k can be expressed in (disjoint) cycle notation in an essentially unique way].\n\n## Product of transpositions\n\nIt is a useful fact that every permutation in a (finite) symmetric group [4cp may be expressed] as a product of [4cn transpositions].\n\n# Examples\n\n- The group $S_1$ is the group of permutations of a one-point set. It contains the identity only, so $S_1$ is the trivial group.\n- The group $S_2$ is isomorphic to the [-47y] of order $2$. It contains the identity map and the map which interchanges $1$ and $2$.\n\nThose are the only two [3h2 abelian] symmetric groups.\nIndeed, in cycle notation, $(123)$ and $(12)$ do not commute in $S_n$ for $n \\geq 3$, because $(123)(12) = (13)$ while $(12)(123) = (23)$.\n\n- The group $S_3$ contains the following six elements: the identity, $(12), (23), (13), (123), (132)$. It is isomorphic to the [-4cy] $D_6$ on three vertices. ([group_s3_isomorphic_to_d6 Proof.])\n\n# Why we care about the symmetric groups\n\nA very important (and rather basic) result is [49b Cayley's Theorem], which states the link between group theory and symmetry.\n\n%%%knows-requisite([4bj]):\n# Conjugacy classes of $S_n$\n\nIt is a useful fact that the conjugacy class of an element in $S_n$ is precisely the set of elements which share its [4cg cycle type]. ([4bh Proof.])\nWe can therefore [4bk list the conjugacy classes] of $S_5$ and their sizes.\n%%%\n\n# Relationship to the [-4hf]\n\nThe [-4hf] $A_n$ is defined as the collection of elements of $S_n$ which can be made by an even number of [4cn transpositions]. This does form a group ([4hg proof]).\n\n%%%knows-requisite([4h6]):\nIn fact $A_n$ is a [-4h6] of $S_n$, obtained by taking the quotient by the [4hk sign homomorphism].\n%%%',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'true',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens'
  ],
  childIds: [
    'cayley_theorem_symmetric_groups',
    'cycle_notation_symmetric_group',
    'disjoint_cycles_commute_symmetric_group',
    'conjugacy_class_is_cycle_type_in_symmetric_group',
    'symmetric_group_five_conjugacy_classes',
    'transposition_in_symmetric_group',
    'symmetric_group_is_generated_by_transpositions',
    'sign_of_permutation_is_well_defined',
    'sign_homomorphism_symmetric_group'
  ],
  parentIds: [
    'group_mathematics'
  ],
  commentIds: [
    '498'
  ],
  questionIds: [],
  tagIds: [
    'needs_summary_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '3855',
      parentId: 'function',
      childId: 'symmetric_group',
      type: 'requirement',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-06-17 21:58:56',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19100',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-08-24 15:31:20',
      auxPageId: 'sign_homomorphism_symmetric_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18375',
      pageId: 'symmetric_group',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-08-04 20:24:16',
      auxPageId: 'needs_summary_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13536',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '17',
      type: 'newEdit',
      createdAt: '2016-06-17 15:13:31',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13535',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '16',
      type: 'newEdit',
      createdAt: '2016-06-17 15:12:59',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13514',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '15',
      type: 'newRequiredBy',
      createdAt: '2016-06-17 14:14:21',
      auxPageId: 'alternating_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13512',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '15',
      type: 'newRequiredBy',
      createdAt: '2016-06-17 14:13:38',
      auxPageId: 'sign_homomorphism_symmetric_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13499',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '15',
      type: 'newRequiredBy',
      createdAt: '2016-06-17 13:43:40',
      auxPageId: 'even_signed_permutations_form_a_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13493',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '15',
      type: 'newChild',
      createdAt: '2016-06-17 13:42:02',
      auxPageId: 'sign_of_permutation_is_well_defined',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13494',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '15',
      type: 'newRequiredBy',
      createdAt: '2016-06-17 13:42:02',
      auxPageId: 'sign_of_permutation_is_well_defined',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13055',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '15',
      type: 'newEdit',
      createdAt: '2016-06-15 14:49:14',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13000',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '14',
      type: 'newEdit',
      createdAt: '2016-06-15 10:06:56',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12999',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '13',
      type: 'newEdit',
      createdAt: '2016-06-15 10:06:36',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12997',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'deleteTeacher',
      createdAt: '2016-06-15 10:05:09',
      auxPageId: 'transposition_in_symmetric_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12995',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '12',
      type: 'newRequiredBy',
      createdAt: '2016-06-15 10:05:08',
      auxPageId: 'transposition_in_symmetric_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12994',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '12',
      type: 'newEdit',
      createdAt: '2016-06-15 10:04:12',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12991',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '11',
      type: 'newChild',
      createdAt: '2016-06-15 10:03:48',
      auxPageId: 'symmetric_group_is_generated_by_transpositions',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12985',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '11',
      type: 'newChild',
      createdAt: '2016-06-15 09:50:47',
      auxPageId: 'transposition_in_symmetric_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12987',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '11',
      type: 'newTeacher',
      createdAt: '2016-06-15 09:50:47',
      auxPageId: 'transposition_in_symmetric_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12851',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '11',
      type: 'newRequiredBy',
      createdAt: '2016-06-14 22:37:43',
      auxPageId: 'symmetric_group_five_conjugacy_classes',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12849',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '11',
      type: 'newRequiredBy',
      createdAt: '2016-06-14 22:37:25',
      auxPageId: 'conjugacy_class_is_cycle_type_in_symmetric_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12844',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '11',
      type: 'newEdit',
      createdAt: '2016-06-14 22:32:20',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12840',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '10',
      type: 'newChild',
      createdAt: '2016-06-14 22:31:36',
      auxPageId: 'symmetric_group_five_conjugacy_classes',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12833',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '10',
      type: 'newChild',
      createdAt: '2016-06-14 22:27:04',
      auxPageId: 'conjugacy_class_is_cycle_type_in_symmetric_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12717',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '10',
      type: 'newRequiredBy',
      createdAt: '2016-06-14 18:51:20',
      auxPageId: 'group_action_induces_homomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12694',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'deleteRequiredBy',
      createdAt: '2016-06-14 17:11:38',
      auxPageId: 'cayley_theorem_symmetric_groups',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12692',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '10',
      type: 'newRequiredBy',
      createdAt: '2016-06-14 17:11:34',
      auxPageId: 'cayley_theorem_symmetric_groups',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12691',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '10',
      type: 'newEdit',
      createdAt: '2016-06-14 17:07:15',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12687',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '9',
      type: 'newEdit',
      createdAt: '2016-06-14 16:46:31',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12674',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '8',
      type: 'newEdit',
      createdAt: '2016-06-14 16:34:51',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12662',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '7',
      type: 'newChild',
      createdAt: '2016-06-14 16:23:56',
      auxPageId: 'disjoint_cycles_commute_symmetric_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12660',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '7',
      type: 'newEdit',
      createdAt: '2016-06-14 16:11:43',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12657',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '6',
      type: 'newChild',
      createdAt: '2016-06-14 16:07:58',
      auxPageId: 'cycle_notation_symmetric_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12655',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '6',
      type: 'newEdit',
      createdAt: '2016-06-14 15:50:41',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12654',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '5',
      type: 'newEdit',
      createdAt: '2016-06-14 15:49:56',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12641',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '4',
      type: 'newChild',
      createdAt: '2016-06-14 15:31:18',
      auxPageId: 'cayley_theorem_symmetric_groups',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12632',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-06-14 12:33:13',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12630',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-06-14 12:30:33',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12623',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-06-14 12:21:33',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12622',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newRequirement',
      createdAt: '2016-06-14 12:15:48',
      auxPageId: 'function',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12620',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newParent',
      createdAt: '2016-06-14 12:15:24',
      auxPageId: 'group_mathematics',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12618',
      pageId: 'symmetric_group',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-14 12:14:52',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'true',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}