{
localUrl: '../page/even_signed_permutations_form_a_group.html',
arbitalUrl: 'https://arbital.com/p/even_signed_permutations_form_a_group',
rawJsonUrl: '../raw/4hg.json',
likeableId: '0',
likeableType: 'page',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
pageId: 'even_signed_permutations_form_a_group',
edit: '1',
editSummary: '',
prevEdit: '0',
currentEdit: '1',
wasPublished: 'true',
type: 'wiki',
title: 'The collection of even-signed permutations is a group',
clickbait: 'This proves the well-definedness of one particular definition of the alternating group.',
textLength: '1041',
alias: 'even_signed_permutations_form_a_group',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'PatrickStevens',
editCreatedAt: '2016-06-17 13:43:40',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-06-17 13:43:40',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '33',
text: 'The collection of elements of the [-497] $S_n$ which are made by multiplying together an even number of permutations forms a subgroup of $S_n$.\n\nThis proves that the [-alternating_group] $A_n$ is well-defined, if it is given as "the subgroup of $S_n$ containing precisely that which is made by multiplying together an even number of transpositions".\n\n# Proof\n\nFirstly we must check that "I can only be made by multiplying together an even number of transpositions" is a well-defined notion; this [4hh is in fact true].\n\nWe must check the group axioms.\n\n- Identity: the identity is simply the product of no transpositions, and $0$ is even.\n- Associativity is inherited from $S_n$.\n- Closure: if we multiply together an even number of transpositions, and then a further even number of transpositions, we obtain an even number of transpositions.\n- Inverses: if $\\sigma$ is made of an even number of transpositions, say $\\tau_1 \\tau_2 \\dots \\tau_m$, then its inverse is $\\tau_m \\tau_{m-1} \\dots \\tau_1$, since a transposition is its own inverse.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens'
],
childIds: [],
parentIds: [
'alternating_group'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [
{
id: '4117',
parentId: 'transposition_in_symmetric_group',
childId: 'even_signed_permutations_form_a_group',
type: 'requirement',
creatorId: 'AlexeiAndreev',
createdAt: '2016-06-17 21:58:56',
level: '1',
isStrong: 'false',
everPublished: 'true'
},
{
id: '4118',
parentId: 'symmetric_group',
childId: 'even_signed_permutations_form_a_group',
type: 'requirement',
creatorId: 'AlexeiAndreev',
createdAt: '2016-06-17 21:58:56',
level: '1',
isStrong: 'false',
everPublished: 'true'
},
{
id: '4124',
parentId: 'sign_of_permutation_is_well_defined',
childId: 'even_signed_permutations_form_a_group',
type: 'requirement',
creatorId: 'AlexeiAndreev',
createdAt: '2016-06-17 21:58:56',
level: '1',
isStrong: 'false',
everPublished: 'true'
}
],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13517',
pageId: 'even_signed_permutations_form_a_group',
userId: 'PatrickStevens',
edit: '1',
type: 'newParent',
createdAt: '2016-06-17 14:14:21',
auxPageId: 'alternating_group',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13501',
pageId: 'even_signed_permutations_form_a_group',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-06-17 13:43:40',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13497',
pageId: 'even_signed_permutations_form_a_group',
userId: 'PatrickStevens',
edit: '1',
type: 'newRequirement',
createdAt: '2016-06-17 13:43:39',
auxPageId: 'sign_of_permutation_is_well_defined',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13486',
pageId: 'even_signed_permutations_form_a_group',
userId: 'PatrickStevens',
edit: '1',
type: 'newRequirement',
createdAt: '2016-06-17 13:16:55',
auxPageId: 'symmetric_group',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13485',
pageId: 'even_signed_permutations_form_a_group',
userId: 'PatrickStevens',
edit: '1',
type: 'newRequirement',
createdAt: '2016-06-17 13:16:47',
auxPageId: 'transposition_in_symmetric_group',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}