{
localUrl: '../page/factorial.html',
arbitalUrl: 'https://arbital.com/p/factorial',
rawJsonUrl: '../raw/5bv.json',
likeableId: '3055',
likeableType: 'page',
myLikeValue: '0',
likeCount: '6',
dislikeCount: '0',
likeScore: '6',
individualLikes: [
'EricBruylant',
'EmmanuelSmith',
'GuillermoAlcantara',
'KevinClancy',
'JaimeSevillaMolina',
'ThomasRichardson'
],
pageId: 'factorial',
edit: '4',
editSummary: 'Pointed the induction links to the mathematical induction page',
prevEdit: '3',
currentEdit: '4',
wasPublished: 'true',
type: 'wiki',
title: 'Factorial',
clickbait: 'The number of ways you can order things. (Alternately subtitled: Is that exclamation point a factorial, or are you just excited to see me?)',
textLength: '3408',
alias: 'factorial',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'DouglasWeathers',
editCreatedAt: '2016-07-17 18:54:44',
pageCreatorId: 'MichaelCohen',
pageCreatedAt: '2016-07-13 05:26:17',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '2',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '228',
text: 'Factorial is most simply defined as a [-3jy] on positive [48l integers]. 5 factorial (written as $5!$) means $1*2*3*4*5$. In general then, for a positive integer $n$, $n!=\\prod_{i=1}^{n}i$. For applications to [ combinatorics], it will also be useful to define $0! = 1$.\n\n## Applications to Combinatorics ##\n\n$n!$ is the number of possible orders for a set of $n$ objects. For example, if we arrange the letters $A$, $B$, and $C$, here are all the options:\n$$ABC$$\n$$ACB$$\n$$BAC$$\n$$BCA$$\n$$CAB$$\n$$CBA$$\nYou can see that there are $6$ possible orders for $3$ objects, and $6 = 3*2*1 = 3!$. Why does this work? We can [5fz prove this by induction]. First, we'll see pretty easily that it works for $1$ object, and then we can show that if it works for $n$ objects, it will work for $n+1$. Here's the case for $1$ object.\n$$A$$\n$$1 = \\prod_{i=1}^{1}i = 1!$$\nNow we have the objects $\\{A_{1},A_{2},...,A_{n},A_{n+1}\\}$, and $n+1$ slots to put them in. If $A_{n+1}$ is in the first slot, now we're ordering $n$ remaining objects in $n$ remaining slots, and by our [5fz induction hypothesis], there are $n!$ ways to do this. Now let's suppose $A_{n+1}$ is in the second slot. Any orderings that result from this will be completely unique from the orderings where $A_{n+1}$ was in the first slot. Again, there are $n$ remaining slots, and $n$ remaining objects to put in them, in an arbitrary order. There are another $n!$ possible orderings. We can put $A_{n+1}$ in each slot, one by one, and generate another $n!$ orderings, all of which are unique, and by the end, we will have every possible ordering. We know we haven't missed any because $A_{n+1}$ has to be somewhere. The total number of orderings we get is $n!*(n+1)$, which equals $(n+1)!$.\n\n\n## Extrapolating to [50d Real Numbers] ##\n\nThe factorial function can be defined in a different way so that it is defined for all real numbers (and in fact for complex numbers too).\n\n%%hidden(Definition):\nWe define $x!$ as follows:\n$$x! = \\Gamma (x+1),$$\nwhere $\\Gamma $ is the [ gamma function]:\n$$\\Gamma(x)=\\int_{0}^{\\infty}t^{x-1}e^{-t}\\mathrm{d} t$$\nWhy does this correspond to the factorial function as defined previously? We can prove by induction that for all positive integers $x$:\n$$\\prod_{i=1}^{x}i = \\int_{0}^{\\infty}t^{x}e^{-t}\\mathrm{d} t$$\nFirst, we verify for the case where $x=1$. Indeed:\n$$\\prod_{i=1}^{1}i = \\int_{0}^{\\infty}t^{1}e^{-t}\\mathrm{d} t$$\n$$1=1$$\nNow we suppose that the equality holds for a given $x$:\n$$\\prod_{i=1}^{x}i = \\int_{0}^{\\infty}t^{x}e^{-t}\\mathrm{d} t$$\nand try to prove that it holds for $x + 1$:\n$$\\prod_{i=1}^{x+1}i = \\int_{0}^{\\infty}t^{x+1}e^{-t}\\mathrm{d} t$$\nWe'll start with the induction hypothesis, and manipulate until we get the equality for $x+1$.\n$$\\prod_{i=1}^{x}i = \\int_{0}^{\\infty}t^{x}e^{-t}\\mathrm{d} t$$\n$$(x+1)\\prod_{i=1}^{x}i = (x+1)\\int_{0}^{\\infty}t^{x}e^{-t}\\mathrm{d} t$$\n$$\\prod_{i=1}^{x+1}i = (x+1)\\int_{0}^{\\infty}t^{x}e^{-t}\\mathrm{d} t$$\n$$= 0+\\int_{0}^{\\infty}(x+1)t^{x}e^{-t}\\mathrm{d} t$$\n$$= \\left (-t^{x+1}e^{-t}) \\right]_{0}^{\\infty}+\\int_{0}^{\\infty}(x+1)t^{x}e^{-t}\\mathrm{d} t$$\n$$= \\left (-t^{x+1}e^{-t}) \\right]_{0}^{\\infty}-\\int_{0}^{\\infty}(x+1)t^{x}(-e^{-t})\\mathrm{d} t$$\nBy the product rule of integration:\n$$=\\int_{0}^{\\infty}t^{x+1}e^{-t}\\mathrm{d} t$$\nThis completes the proof by induction, and that's why we can define factorials in terms of the gamma function.\n%%',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '2',
maintainerCount: '2',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'EricBruylant',
'MichaelCohen',
'DouglasWeathers'
],
childIds: [
'5wv'
],
parentIds: [
'math'
],
commentIds: [
'5c9'
],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [
{
id: '116',
pageId: 'factorial',
lensId: '5wv',
lensIndex: '0',
lensName: 'Slower',
lensSubtitle: '',
createdBy: '267',
createdAt: '2016-08-17 11:05:11',
updatedBy: '267',
updatedAt: '2016-08-17 11:05:33'
}
],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '18775',
pageId: 'factorial',
userId: 'PatrickStevens',
edit: '0',
type: 'newChild',
createdAt: '2016-08-17 11:04:29',
auxPageId: '5wv',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3104',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '2',
dislikeCount: '0',
likeScore: '2',
individualLikes: [],
id: '17055',
pageId: 'factorial',
userId: 'DouglasWeathers',
edit: '4',
type: 'newEdit',
createdAt: '2016-07-17 18:54:44',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: 'Pointed the induction links to the mathematical induction page'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16736',
pageId: 'factorial',
userId: 'EricBruylant',
edit: '3',
type: 'newEdit',
createdAt: '2016-07-15 00:09:04',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: 'added show/hide'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16646',
pageId: 'factorial',
userId: 'EricBruylant',
edit: '0',
type: 'newParent',
createdAt: '2016-07-13 20:58:09',
auxPageId: 'math',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16644',
pageId: 'factorial',
userId: 'EricBruylant',
edit: '2',
type: 'newEdit',
createdAt: '2016-07-13 20:58:02',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: 'adding link'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16627',
pageId: 'factorial',
userId: 'MichaelCohen',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-13 05:26:17',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'true',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {
slowDown: {
likeableId: '3106',
likeableType: 'contentRequest',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '4',
pageId: 'factorial',
requestType: 'slowDown',
createdAt: '2016-07-18 04:12:26'
}
}
}