{
  localUrl: '../page/factorial.html',
  arbitalUrl: 'https://arbital.com/p/factorial',
  rawJsonUrl: '../raw/5bv.json',
  likeableId: '3055',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '6',
  dislikeCount: '0',
  likeScore: '6',
  individualLikes: [
    'EricBruylant',
    'EmmanuelSmith',
    'GuillermoAlcantara',
    'KevinClancy',
    'JaimeSevillaMolina',
    'ThomasRichardson'
  ],
  pageId: 'factorial',
  edit: '4',
  editSummary: 'Pointed the induction links to the mathematical induction page',
  prevEdit: '3',
  currentEdit: '4',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Factorial',
  clickbait: 'The number of ways you can order things. (Alternately subtitled: Is that exclamation point a factorial, or are you just excited to see me?)',
  textLength: '3408',
  alias: 'factorial',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'DouglasWeathers',
  editCreatedAt: '2016-07-17 18:54:44',
  pageCreatorId: 'MichaelCohen',
  pageCreatedAt: '2016-07-13 05:26:17',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '2',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '228',
  text: 'Factorial is most simply defined as a [-3jy] on positive [48l integers]. 5 factorial (written as $5!$) means $1*2*3*4*5$. In general then, for a positive integer $n$, $n!=\\prod_{i=1}^{n}i$. For applications to [ combinatorics], it will also be useful to define $0! = 1$.\n\n## Applications to Combinatorics ##\n\n$n!$ is the number of possible orders for a set of $n$ objects. For example, if we arrange the letters $A$, $B$, and $C$, here are all the options:\n$$ABC$$\n$$ACB$$\n$$BAC$$\n$$BCA$$\n$$CAB$$\n$$CBA$$\nYou can see that there are $6$ possible orders for $3$ objects, and $6 = 3*2*1 = 3!$. Why does this work? We can [5fz prove this by induction]. First, we'll see pretty easily that it works for $1$ object, and then we can show that if it works for $n$ objects, it will work for $n+1$. Here's the case for $1$ object.\n$$A$$\n$$1 = \\prod_{i=1}^{1}i = 1!$$\nNow we have the objects $\\{A_{1},A_{2},...,A_{n},A_{n+1}\\}$, and $n+1$ slots to put them in. If $A_{n+1}$ is in the first slot, now we're ordering $n$ remaining objects in $n$ remaining slots, and by our [5fz induction hypothesis], there are $n!$ ways to do this. Now let's suppose $A_{n+1}$ is in the second slot. Any orderings that result from this will be completely unique from the orderings where $A_{n+1}$ was in the first slot. Again, there are $n$ remaining slots, and $n$ remaining objects to put in them, in an arbitrary order. There are another $n!$ possible orderings. We can put $A_{n+1}$ in each slot, one by one, and generate another $n!$ orderings, all of which are unique, and by the end, we will have every possible ordering. We know we haven't missed any because $A_{n+1}$ has to be somewhere. The total number of orderings we get is $n!*(n+1)$, which equals $(n+1)!$.\n\n\n## Extrapolating to [50d Real Numbers] ##\n\nThe factorial function can be defined in a different way so that it is defined for all real numbers (and in fact for complex numbers too).\n\n%%hidden(Definition):\nWe define $x!$ as follows:\n$$x! = \\Gamma (x+1),$$\nwhere $\\Gamma $ is the [ gamma function]:\n$$\\Gamma(x)=\\int_{0}^{\\infty}t^{x-1}e^{-t}\\mathrm{d} t$$\nWhy does this correspond to the factorial function as defined previously? We can prove by induction that for all positive integers $x$:\n$$\\prod_{i=1}^{x}i = \\int_{0}^{\\infty}t^{x}e^{-t}\\mathrm{d} t$$\nFirst, we verify for the case where $x=1$. Indeed:\n$$\\prod_{i=1}^{1}i = \\int_{0}^{\\infty}t^{1}e^{-t}\\mathrm{d} t$$\n$$1=1$$\nNow we suppose that the equality holds for a given $x$:\n$$\\prod_{i=1}^{x}i = \\int_{0}^{\\infty}t^{x}e^{-t}\\mathrm{d} t$$\nand try to prove that it holds for $x + 1$:\n$$\\prod_{i=1}^{x+1}i = \\int_{0}^{\\infty}t^{x+1}e^{-t}\\mathrm{d} t$$\nWe'll start with the induction hypothesis, and manipulate until we get the equality for $x+1$.\n$$\\prod_{i=1}^{x}i = \\int_{0}^{\\infty}t^{x}e^{-t}\\mathrm{d} t$$\n$$(x+1)\\prod_{i=1}^{x}i = (x+1)\\int_{0}^{\\infty}t^{x}e^{-t}\\mathrm{d} t$$\n$$\\prod_{i=1}^{x+1}i = (x+1)\\int_{0}^{\\infty}t^{x}e^{-t}\\mathrm{d} t$$\n$$= 0+\\int_{0}^{\\infty}(x+1)t^{x}e^{-t}\\mathrm{d} t$$\n$$= \\left (-t^{x+1}e^{-t})  \\right]_{0}^{\\infty}+\\int_{0}^{\\infty}(x+1)t^{x}e^{-t}\\mathrm{d} t$$\n$$= \\left (-t^{x+1}e^{-t})  \\right]_{0}^{\\infty}-\\int_{0}^{\\infty}(x+1)t^{x}(-e^{-t})\\mathrm{d} t$$\nBy the product rule of integration:\n$$=\\int_{0}^{\\infty}t^{x+1}e^{-t}\\mathrm{d} t$$\nThis completes the proof by induction, and that's why we can define factorials in terms of the gamma function.\n%%',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '2',
  maintainerCount: '2',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'EricBruylant',
    'MichaelCohen',
    'DouglasWeathers'
  ],
  childIds: [
    '5wv'
  ],
  parentIds: [
    'math'
  ],
  commentIds: [
    '5c9'
  ],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [],
  subjects: [],
  lenses: [
    {
      id: '116',
      pageId: 'factorial',
      lensId: '5wv',
      lensIndex: '0',
      lensName: 'Slower',
      lensSubtitle: '',
      createdBy: '267',
      createdAt: '2016-08-17 11:05:11',
      updatedBy: '267',
      updatedAt: '2016-08-17 11:05:33'
    }
  ],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18775',
      pageId: 'factorial',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-08-17 11:04:29',
      auxPageId: '5wv',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '3104',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '2',
      dislikeCount: '0',
      likeScore: '2',
      individualLikes: [],
      id: '17055',
      pageId: 'factorial',
      userId: 'DouglasWeathers',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-07-17 18:54:44',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'Pointed the induction links to the mathematical induction page'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16736',
      pageId: 'factorial',
      userId: 'EricBruylant',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-07-15 00:09:04',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'added show/hide'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16646',
      pageId: 'factorial',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-13 20:58:09',
      auxPageId: 'math',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16644',
      pageId: 'factorial',
      userId: 'EricBruylant',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-07-13 20:58:02',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: 'adding link'
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16627',
      pageId: 'factorial',
      userId: 'MichaelCohen',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-13 05:26:17',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'true',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {
    slowDown: {
      likeableId: '3106',
      likeableType: 'contentRequest',
      myLikeValue: '0',
      likeCount: '1',
      dislikeCount: '0',
      likeScore: '1',
      individualLikes: [],
      id: '4',
      pageId: 'factorial',
      requestType: 'slowDown',
      createdAt: '2016-07-18 04:12:26'
    }
  }
}