{
localUrl: '../page/group_homomorphism.html',
arbitalUrl: 'https://arbital.com/p/group_homomorphism',
rawJsonUrl: '../raw/47t.json',
likeableId: '2657',
likeableType: 'page',
myLikeValue: '0',
likeCount: '2',
dislikeCount: '0',
likeScore: '2',
individualLikes: [
'EricBruylant',
'JaimeSevillaMolina'
],
pageId: 'group_homomorphism',
edit: '8',
editSummary: '',
prevEdit: '6',
currentEdit: '8',
wasPublished: 'true',
type: 'wiki',
title: 'Group homomorphism',
clickbait: 'A group homomorphism is a "function between groups" that "respects the group structure".',
textLength: '3004',
alias: 'group_homomorphism',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'EricBruylant',
editCreatedAt: '2016-06-22 18:47:46',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-06-13 12:26:33',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '110',
text: '[summary: A group homomorphism is a function between [3gd groups] which "respects the group structure".]\n\n[summary(Technical): Formally, given two groups $(G, +)$ and $(H, *)$ (which hereafter we will abbreviate as $G$ and $H$ respectively), a group homomorphism from $G$ to $H$ is a [-3jy] $f$ from the underlying set $G$ to the underlying set $H$, such that $f(a) * f(b) = f(a+b)$ for all $a, b \\in G$.]\n\nA group homomorphism is a function between [3gd groups] which "respects the group structure".\n\n#Definition\n\nFormally, given two groups $(G, +)$ and $(H, *)$ (which hereafter we will abbreviate as $G$ and $H$ respectively), a group homomorphism from $G$ to $H$ is a [-3jy] $f$ from the underlying set $G$ to the underlying set $H$, such that $f(a) * f(b) = f(a+b)$ for all $a, b \\in G$.\n\n#Examples\n\n - For any group $G$, there is a group homomorphism $1_G: G \\to G$, given by $1_G(g) = g$ for all $g \\in G$. This homomorphism is always [499 bijective].\n - For any group $G$, there is a (unique) group homomorphism into the group $\\{ e \\}$ with one element and the only possible group operation $e * e = e$. This homomorphism is given by $g \\mapsto e$ for all $g \\in G$. This homomorphism is usually not [4b7 injective]: it is injective if and only if $G$ is the group with one element. (Uniqueness is guaranteed because there is only one *function*, let alone group homomorphism, from any set $X$ to a set with one element.)\n - For any group $G$, there is a (unique) group homomorphism from the group with one element into $G$, given by $e \\mapsto e_G$, the identity of $G$. This homomorphism is usually not [4bg surjective]: it is surjective if and only if $G$ is the group with one element. (Uniqueness is guaranteed this time by the property proved below that the identity gets mapped to the identity.)\n - For any group $(G, +)$, there is a bijective group homomorphism to another group $G^{\\mathrm{op}}$ given by taking inverses: $g \\mapsto g^{-1}$. The group $G^{\\mathrm{op}}$ is defined to have underlying set equal to that of $G$, and group operation $g +_{\\mathrm{op}} h := h + g$.\n - For any pair of groups $G, H$, there is a homomorphism between $G$ and $H$ given by $g \\mapsto e_H$.\n - There is only one homomorphism between the group $C_2 = \\{ e_{C_2}, g \\}$ with two elements and the group $C_3 = \\{e_{C_3}, h, h^2 \\}$ with three elements; it is given by $e_{C_2} \\mapsto e_{C_3}, g \\mapsto e_{C_3}$. For example, the function $f: C_2 \\to C_3$ given by $e_{C_2} \\mapsto e_{C_3}, g \\mapsto h$ is *not* a group homomorphism, because if it were, then $e_{C_3} = f(e_{C_2}) = f(gg) = f(g) f(g) = h h = h^2$, which is not true. (We have used that the identity gets mapped to the identity.)\n\n# Properties\n\n- The identity gets mapped to the identity. ([49z Proof.])\n- The inverse of the image is the image of the inverse. ([4b1 Proof.])\n- The [3lh image] of a group under a homomorphism is another group. ([4b4 Proof.])\n- The composition of two homomorphisms is a homomorphism. ([4b6 Proof.])',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'true',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'EricBruylant',
'PatrickStevens'
],
childIds: [
'kernel_of_group_homomorphism',
'image_of_identity_under_group_homomorphism',
'group_homomorphism_image_of_inverse',
'image_of_group_under_homomorphism_is_subgroup',
'composition_of_group_homomorphisms_is_homomorphism'
],
parentIds: [
'group_mathematics'
],
commentIds: [
'47w'
],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [
{
id: '3823',
parentId: 'function',
childId: 'group_homomorphism',
type: 'requirement',
creatorId: 'AlexeiAndreev',
createdAt: '2016-06-17 21:58:56',
level: '1',
isStrong: 'false',
everPublished: 'true'
},
{
id: '3882',
parentId: 'group_mathematics',
childId: 'group_homomorphism',
type: 'requirement',
creatorId: 'AlexeiAndreev',
createdAt: '2016-06-17 21:58:56',
level: '1',
isStrong: 'false',
everPublished: 'true'
}
],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14413',
pageId: 'group_homomorphism',
userId: 'EricBruylant',
edit: '8',
type: 'newEdit',
createdAt: '2016-06-22 18:47:46',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14406',
pageId: 'group_homomorphism',
userId: 'EricBruylant',
edit: '6',
type: 'revertEdit',
createdAt: '2016-06-22 18:28:33',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14405',
pageId: 'group_homomorphism',
userId: 'EricBruylant',
edit: '7',
type: 'newEdit',
createdAt: '2016-06-22 18:27:21',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13510',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '6',
type: 'newRequiredBy',
createdAt: '2016-06-17 14:13:38',
auxPageId: 'sign_homomorphism_symmetric_group',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13495',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '6',
type: 'newRequiredBy',
createdAt: '2016-06-17 13:42:02',
auxPageId: 'sign_of_permutation_is_well_defined',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12783',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '0',
type: 'deleteTag',
createdAt: '2016-06-14 19:41:58',
auxPageId: 'needs_summary_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12778',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '6',
type: 'newEdit',
createdAt: '2016-06-14 19:39:12',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12773',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '5',
type: 'newChild',
createdAt: '2016-06-14 19:39:06',
auxPageId: 'composition_of_group_homomorphisms_is_homomorphism',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12774',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '5',
type: 'newRequiredBy',
createdAt: '2016-06-14 19:39:06',
auxPageId: 'composition_of_group_homomorphisms_is_homomorphism',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12767',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '5',
type: 'newChild',
createdAt: '2016-06-14 19:36:09',
auxPageId: 'kernel_of_group_homomorphism',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12768',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '5',
type: 'newRequiredBy',
createdAt: '2016-06-14 19:36:09',
auxPageId: 'kernel_of_group_homomorphism',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12763',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '5',
type: 'newChild',
createdAt: '2016-06-14 19:30:27',
auxPageId: 'image_of_group_under_homomorphism_is_subgroup',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12764',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '5',
type: 'newRequiredBy',
createdAt: '2016-06-14 19:30:27',
auxPageId: 'image_of_group_under_homomorphism_is_subgroup',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12757',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '5',
type: 'newChild',
createdAt: '2016-06-14 19:25:30',
auxPageId: 'group_homomorphism_image_of_inverse',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12758',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '5',
type: 'newRequiredBy',
createdAt: '2016-06-14 19:25:30',
auxPageId: 'group_homomorphism_image_of_inverse',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12748',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '5',
type: 'newChild',
createdAt: '2016-06-14 19:21:36',
auxPageId: 'image_of_identity_under_group_homomorphism',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12750',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '5',
type: 'newRequiredBy',
createdAt: '2016-06-14 19:21:36',
auxPageId: 'image_of_identity_under_group_homomorphism',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12730',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '5',
type: 'newRequiredBy',
createdAt: '2016-06-14 19:09:29',
auxPageId: 'group_isomorphism',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12716',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '5',
type: 'newRequirement',
createdAt: '2016-06-14 18:50:49',
auxPageId: 'group_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12649',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '5',
type: 'newRequiredBy',
createdAt: '2016-06-14 15:47:25',
auxPageId: 'group_action_induces_homomorphism',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12617',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '5',
type: 'newEdit',
createdAt: '2016-06-14 11:52:42',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '2665',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '12552',
pageId: 'group_homomorphism',
userId: 'EricBruylant',
edit: '3',
type: 'newEdit',
createdAt: '2016-06-13 16:35:02',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12551',
pageId: 'group_homomorphism',
userId: 'EricBruylant',
edit: '2',
type: 'newTag',
createdAt: '2016-06-13 16:34:04',
auxPageId: 'needs_summary_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12539',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '2',
type: 'newEdit',
createdAt: '2016-06-13 14:45:27',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12536',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '0',
type: 'deleteRequirement',
createdAt: '2016-06-13 12:37:27',
auxPageId: 'group_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12534',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '1',
type: 'newParent',
createdAt: '2016-06-13 12:37:26',
auxPageId: 'group_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12532',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '1',
type: 'newRequirement',
createdAt: '2016-06-13 12:37:09',
auxPageId: 'group_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12530',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '1',
type: 'newRequirement',
createdAt: '2016-06-13 12:36:59',
auxPageId: 'function',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '12528',
pageId: 'group_homomorphism',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-06-13 12:26:33',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'true',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}