{ localUrl: '../page/group_homomorphism.html', arbitalUrl: 'https://arbital.com/p/group_homomorphism', rawJsonUrl: '../raw/47t.json', likeableId: '2657', likeableType: 'page', myLikeValue: '0', likeCount: '2', dislikeCount: '0', likeScore: '2', individualLikes: [ 'EricBruylant', 'JaimeSevillaMolina' ], pageId: 'group_homomorphism', edit: '8', editSummary: '', prevEdit: '6', currentEdit: '8', wasPublished: 'true', type: 'wiki', title: 'Group homomorphism', clickbait: 'A group homomorphism is a "function between groups" that "respects the group structure".', textLength: '3004', alias: 'group_homomorphism', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'EricBruylant', editCreatedAt: '2016-06-22 18:47:46', pageCreatorId: 'PatrickStevens', pageCreatedAt: '2016-06-13 12:26:33', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '110', text: '[summary: A group homomorphism is a function between [3gd groups] which "respects the group structure".]\n\n[summary(Technical): Formally, given two groups $(G, +)$ and $(H, *)$ (which hereafter we will abbreviate as $G$ and $H$ respectively), a group homomorphism from $G$ to $H$ is a [-3jy] $f$ from the underlying set $G$ to the underlying set $H$, such that $f(a) * f(b) = f(a+b)$ for all $a, b \\in G$.]\n\nA group homomorphism is a function between [3gd groups] which "respects the group structure".\n\n#Definition\n\nFormally, given two groups $(G, +)$ and $(H, *)$ (which hereafter we will abbreviate as $G$ and $H$ respectively), a group homomorphism from $G$ to $H$ is a [-3jy] $f$ from the underlying set $G$ to the underlying set $H$, such that $f(a) * f(b) = f(a+b)$ for all $a, b \\in G$.\n\n#Examples\n\n - For any group $G$, there is a group homomorphism $1_G: G \\to G$, given by $1_G(g) = g$ for all $g \\in G$. This homomorphism is always [499 bijective].\n - For any group $G$, there is a (unique) group homomorphism into the group $\\{ e \\}$ with one element and the only possible group operation $e * e = e$. This homomorphism is given by $g \\mapsto e$ for all $g \\in G$. This homomorphism is usually not [4b7 injective]: it is injective if and only if $G$ is the group with one element. (Uniqueness is guaranteed because there is only one *function*, let alone group homomorphism, from any set $X$ to a set with one element.)\n - For any group $G$, there is a (unique) group homomorphism from the group with one element into $G$, given by $e \\mapsto e_G$, the identity of $G$. This homomorphism is usually not [4bg surjective]: it is surjective if and only if $G$ is the group with one element. (Uniqueness is guaranteed this time by the property proved below that the identity gets mapped to the identity.)\n - For any group $(G, +)$, there is a bijective group homomorphism to another group $G^{\\mathrm{op}}$ given by taking inverses: $g \\mapsto g^{-1}$. The group $G^{\\mathrm{op}}$ is defined to have underlying set equal to that of $G$, and group operation $g +_{\\mathrm{op}} h := h + g$.\n - For any pair of groups $G, H$, there is a homomorphism between $G$ and $H$ given by $g \\mapsto e_H$.\n - There is only one homomorphism between the group $C_2 = \\{ e_{C_2}, g \\}$ with two elements and the group $C_3 = \\{e_{C_3}, h, h^2 \\}$ with three elements; it is given by $e_{C_2} \\mapsto e_{C_3}, g \\mapsto e_{C_3}$. For example, the function $f: C_2 \\to C_3$ given by $e_{C_2} \\mapsto e_{C_3}, g \\mapsto h$ is *not* a group homomorphism, because if it were, then $e_{C_3} = f(e_{C_2}) = f(gg) = f(g) f(g) = h h = h^2$, which is not true. (We have used that the identity gets mapped to the identity.)\n\n# Properties\n\n- The identity gets mapped to the identity. ([49z Proof.])\n- The inverse of the image is the image of the inverse. ([4b1 Proof.])\n- The [3lh image] of a group under a homomorphism is another group. ([4b4 Proof.])\n- The composition of two homomorphisms is a homomorphism. ([4b6 Proof.])', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '1', maintainerCount: '1', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'true', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'EricBruylant', 'PatrickStevens' ], childIds: [ 'kernel_of_group_homomorphism', 'image_of_identity_under_group_homomorphism', 'group_homomorphism_image_of_inverse', 'image_of_group_under_homomorphism_is_subgroup', 'composition_of_group_homomorphisms_is_homomorphism' ], parentIds: [ 'group_mathematics' ], commentIds: [ '47w' ], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [ { id: '3823', parentId: 'function', childId: 'group_homomorphism', type: 'requirement', creatorId: 'AlexeiAndreev', createdAt: '2016-06-17 21:58:56', level: '1', isStrong: 'false', everPublished: 'true' }, { id: '3882', parentId: 'group_mathematics', childId: 'group_homomorphism', type: 'requirement', creatorId: 'AlexeiAndreev', createdAt: '2016-06-17 21:58:56', level: '1', isStrong: 'false', everPublished: 'true' } ], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14413', pageId: 'group_homomorphism', userId: 'EricBruylant', edit: '8', type: 'newEdit', createdAt: '2016-06-22 18:47:46', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14406', pageId: 'group_homomorphism', userId: 'EricBruylant', edit: '6', type: 'revertEdit', createdAt: '2016-06-22 18:28:33', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '14405', pageId: 'group_homomorphism', userId: 'EricBruylant', edit: '7', type: 'newEdit', createdAt: '2016-06-22 18:27:21', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13510', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '6', type: 'newRequiredBy', createdAt: '2016-06-17 14:13:38', auxPageId: 'sign_homomorphism_symmetric_group', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13495', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '6', type: 'newRequiredBy', createdAt: '2016-06-17 13:42:02', auxPageId: 'sign_of_permutation_is_well_defined', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12783', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '0', type: 'deleteTag', createdAt: '2016-06-14 19:41:58', auxPageId: 'needs_summary_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12778', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '6', type: 'newEdit', createdAt: '2016-06-14 19:39:12', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12773', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '5', type: 'newChild', createdAt: '2016-06-14 19:39:06', auxPageId: 'composition_of_group_homomorphisms_is_homomorphism', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12774', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '5', type: 'newRequiredBy', createdAt: '2016-06-14 19:39:06', auxPageId: 'composition_of_group_homomorphisms_is_homomorphism', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12767', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '5', type: 'newChild', createdAt: '2016-06-14 19:36:09', auxPageId: 'kernel_of_group_homomorphism', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12768', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '5', type: 'newRequiredBy', createdAt: '2016-06-14 19:36:09', auxPageId: 'kernel_of_group_homomorphism', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12763', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '5', type: 'newChild', createdAt: '2016-06-14 19:30:27', auxPageId: 'image_of_group_under_homomorphism_is_subgroup', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12764', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '5', type: 'newRequiredBy', createdAt: '2016-06-14 19:30:27', auxPageId: 'image_of_group_under_homomorphism_is_subgroup', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12757', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '5', type: 'newChild', createdAt: '2016-06-14 19:25:30', auxPageId: 'group_homomorphism_image_of_inverse', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12758', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '5', type: 'newRequiredBy', createdAt: '2016-06-14 19:25:30', auxPageId: 'group_homomorphism_image_of_inverse', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12748', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '5', type: 'newChild', createdAt: '2016-06-14 19:21:36', auxPageId: 'image_of_identity_under_group_homomorphism', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12750', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '5', type: 'newRequiredBy', createdAt: '2016-06-14 19:21:36', auxPageId: 'image_of_identity_under_group_homomorphism', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12730', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '5', type: 'newRequiredBy', createdAt: '2016-06-14 19:09:29', auxPageId: 'group_isomorphism', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12716', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '5', type: 'newRequirement', createdAt: '2016-06-14 18:50:49', auxPageId: 'group_mathematics', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12649', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '5', type: 'newRequiredBy', createdAt: '2016-06-14 15:47:25', auxPageId: 'group_action_induces_homomorphism', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12617', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '5', type: 'newEdit', createdAt: '2016-06-14 11:52:42', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '2665', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '12552', pageId: 'group_homomorphism', userId: 'EricBruylant', edit: '3', type: 'newEdit', createdAt: '2016-06-13 16:35:02', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12551', pageId: 'group_homomorphism', userId: 'EricBruylant', edit: '2', type: 'newTag', createdAt: '2016-06-13 16:34:04', auxPageId: 'needs_summary_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12539', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '2', type: 'newEdit', createdAt: '2016-06-13 14:45:27', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12536', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '0', type: 'deleteRequirement', createdAt: '2016-06-13 12:37:27', auxPageId: 'group_mathematics', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12534', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '1', type: 'newParent', createdAt: '2016-06-13 12:37:26', auxPageId: 'group_mathematics', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12532', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '1', type: 'newRequirement', createdAt: '2016-06-13 12:37:09', auxPageId: 'group_mathematics', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12530', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '1', type: 'newRequirement', createdAt: '2016-06-13 12:36:59', auxPageId: 'function', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12528', pageId: 'group_homomorphism', userId: 'PatrickStevens', edit: '1', type: 'newEdit', createdAt: '2016-06-13 12:26:33', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'true', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }