{
  localUrl: '../page/group_action_induces_homomorphism.html',
  arbitalUrl: 'https://arbital.com/p/group_action_induces_homomorphism',
  rawJsonUrl: '../raw/49c.json',
  likeableId: '0',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '0',
  dislikeCount: '0',
  likeScore: '0',
  individualLikes: [],
  pageId: 'group_action_induces_homomorphism',
  edit: '3',
  editSummary: '',
  prevEdit: '2',
  currentEdit: '3',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Group action induces homomorphism to the symmetric group',
  clickbait: 'We can view group actions as "bundles of homomorphisms" which behave in a certain way.',
  textLength: '1562',
  alias: 'group_action_induces_homomorphism',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-06-14 17:05:26',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-06-14 15:47:25',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '24',
  text: 'Just as we can [currying curry] functions, so we can "curry" [47t homomorphisms] and [3t9 actions].\n\nGiven an action $\\rho: G \\times X \\to X$ of group $G$ on set $X$, we can consider what happens if we fix the first argument to $\\rho$. Writing $\\rho(g)$ for the induced map $X \\to X$ given by $x \\mapsto \\rho(g, x)$, we can see that $\\rho(g)$ is a [499 bijection].\n\nIndeed, we claim that $\\rho(g^{-1})$ is an inverse map to $\\rho(g)$.\nConsider $\\rho(g^{-1})(\\rho(g)(x))$.\nThis is precisely $\\rho(g^{-1})(\\rho(g, x))$, which is precisely $\\rho(g^{-1}, \\rho(g, x))$.\nBy the definition of an action, this is just $\\rho(g^{-1} g, x) = \\rho(e, x) = x$, where $e$ is the group's identity.\n\nWe omit the proof that $\\rho(g)(\\rho(g^{-1})(x)) = x$, because it is nearly identical.\n\nThat is, we have proved that $\\rho(g)$ is in $\\mathrm{Sym}(X)$, where $\\mathrm{Sym}$ is the [-497]; equivalently, we can view $\\rho$ as mapping elements of $G$ into $\\mathrm{Sym}(X)$, as well as our original definition of mapping elements of $G \\times X$ into $X$.\n\n# $\\rho$ is a homomorphism in this new sense\n\nIt turns out that $\\rho: G \\to \\mathrm{Sym}(X)$ is a homomorphism.\nIt suffices to show that $\\rho(gh) = \\rho(g) \\rho(h)$, where recall that the operation in $\\mathrm{Sym}(X)$ is composition of permutations.\n\nBut this is true: $\\rho(gh)(x) = \\rho(gh, x)$ by definition of $\\rho(gh)$; that is $\\rho(g, \\rho(h, x))$ because $\\rho$ is a group action; that is $\\rho(g)(\\rho(h, x))$ by definition of $\\rho(g)$; and that is $\\rho(g)(\\rho(h)(x))$ by definition of $\\rho(h)$ as required.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'true',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens'
  ],
  childIds: [],
  parentIds: [
    'group_action'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '3863',
      parentId: 'group_homomorphism',
      childId: 'group_action_induces_homomorphism',
      type: 'requirement',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-06-17 21:58:56',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    },
    {
      id: '3883',
      parentId: 'symmetric_group',
      childId: 'group_action_induces_homomorphism',
      type: 'requirement',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-06-17 21:58:56',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12727',
      pageId: 'group_action_induces_homomorphism',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'deleteTeacher',
      createdAt: '2016-06-14 19:00:34',
      auxPageId: 'group_action_induces_homomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12728',
      pageId: 'group_action_induces_homomorphism',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'deleteSubject',
      createdAt: '2016-06-14 19:00:34',
      auxPageId: 'group_action_induces_homomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12723',
      pageId: 'group_action_induces_homomorphism',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newTeacher',
      createdAt: '2016-06-14 18:56:55',
      auxPageId: 'group_action_induces_homomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12724',
      pageId: 'group_action_induces_homomorphism',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newSubject',
      createdAt: '2016-06-14 18:56:55',
      auxPageId: 'group_action_induces_homomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12718',
      pageId: 'group_action_induces_homomorphism',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newRequirement',
      createdAt: '2016-06-14 18:51:20',
      auxPageId: 'symmetric_group',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12713',
      pageId: 'group_action_induces_homomorphism',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newRequiredBy',
      createdAt: '2016-06-14 18:50:13',
      auxPageId: 'cayley_theorem_symmetric_groups',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12690',
      pageId: 'group_action_induces_homomorphism',
      userId: 'PatrickStevens',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-06-14 17:05:26',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12653',
      pageId: 'group_action_induces_homomorphism',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-06-14 15:49:06',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12650',
      pageId: 'group_action_induces_homomorphism',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-14 15:47:25',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12647',
      pageId: 'group_action_induces_homomorphism',
      userId: 'PatrickStevens',
      edit: '0',
      type: 'deleteRequirement',
      createdAt: '2016-06-14 15:41:00',
      auxPageId: 'function',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12646',
      pageId: 'group_action_induces_homomorphism',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newRequirement',
      createdAt: '2016-06-14 15:40:56',
      auxPageId: 'group_homomorphism',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12645',
      pageId: 'group_action_induces_homomorphism',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newRequirement',
      createdAt: '2016-06-14 15:40:52',
      auxPageId: 'function',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '12644',
      pageId: 'group_action_induces_homomorphism',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newParent',
      createdAt: '2016-06-14 15:37:19',
      auxPageId: 'group_action',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}