{
localUrl: '../page/math_order_complete_lattice.html',
arbitalUrl: 'https://arbital.com/p/math_order_complete_lattice',
rawJsonUrl: '../raw/76m.json',
likeableId: '3912',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'EricBruylant'
],
pageId: 'math_order_complete_lattice',
edit: '20',
editSummary: '',
prevEdit: '19',
currentEdit: '20',
wasPublished: 'true',
type: 'wiki',
title: 'Complete lattice',
clickbait: 'A poset that is closed under arbitrary joins and meets.',
textLength: '7749',
alias: 'math_order_complete_lattice',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'KevinClancy',
editCreatedAt: '2017-02-10 21:53:34',
pageCreatorId: 'KevinClancy',
pageCreatedAt: '2017-01-01 20:45:45',
seeDomainId: '0',
editDomainId: '247',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'false',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '31',
text: '[summary: \nA **complete lattice** is a [3rb poset] that is closed under arbitrary [3rc joins and meets]. A complete lattice, being closed under arbitrary joins and meets, is closed in particular under binary joins and meets. A complete lattice is thus a specific type of [46c lattice], and hence satisfies [3h4 associativity], [3jb commutativity], idempotence, and absorption of joins and meets. Complete lattices can be equivalently formulated as posets which are closed under arbitrary joins; it then follows that complete lattices are closed under arbitrary meets as well.\n\nBecause complete lattices are closed under all joins, a complete lattice $L$ must contain both $\\bigvee \\emptyset$ and $\\bigvee L$ as elements. Since $\\bigvee \\emptyset$ is a lower bound of $L$ and $\\bigvee L$ is an upper bound of $L$, complete lattices are bounded. \n]\n\nA **complete lattice** is a [3rb poset] that is closed under arbitrary [3rc joins and meets]. A complete lattice, being closed under arbitrary joins and meets, is closed in particular under binary joins and meets; a complete lattice is thus a specific type of [46c lattice], and hence satisfies [3h4 associativity], [3jb commutativity], idempotence, and absorption of joins and meets.\n\nComplete lattices can be equivalently formulated as posets which are closed under arbitrary joins; it then follows that complete lattices are closed under arbitrary meets as well.\n\n%%hidden(Proof):\nSuppose that $P$ is a poset which is closed under arbitrary joins. Let $A \\subseteq P$. Let $A^L$ be the set of lower bounds of $A$, i.e. the set $\\{ p \\in P \\mid \\forall a \\in A. p \\leq a \\}$. Since $P$ is closed under joins, we have the existence of $\\bigvee A^L$ in $P$. We will now show that $\\bigvee A^L$ is the meet of $A$.\n\nFirst, we show that $\\bigvee A^L$ is a lower bound of $A$. Let $a \\in A$. By the definition of $A^L$, $a$ is an upper bound of $A^L$. Because $\\bigvee A^L$ is less than or equal to any upper bound of $A^L$, we have $\\bigvee A^L \\leq a$. $\\bigvee A^L$ is therefore a lower bound of $A$.\n\nNow we will show that $\\bigvee A^L$ is greater than or equal to any lower bound of $A$. Let $p \\in P$ be a lower bound of $A$. Then $p \\in A^L$. Because $\\bigvee A^L$ is an upper bound of $A^L$, we have $p \\leq \\bigvee A^L$.\n%%\n\nComplete lattices are bounded\n========================\n\nAs a consequence of closure under arbitrary joins, a complete attice $L$ contains both $\\bigvee \\emptyset$ and $\\bigvee L$. The former is the least element of $L$ satisfying a vacuous set of constraints; every element of $L$ satisfies a vacuous set of constraints, so this is really the minimum element of $L$. The latter is an upper bound of all elements of $L$, and so it is a maximum. A lattice with both minimum and maximum elements is called bounded, and as this discussion has shown, all complete lattices are bounded.\n\nBasic examples\n=============\n\nFinite Lattices\n------------------------\n\nThe collection of all subsets of a finite lattice coincides with its collection of finite subsets. A finite lattice, being a finite poset that is closed under finite joins, is then necessarily closed under arbitrary joins. All finite lattices are therefore complete lattices.\n\nPowersets\n------------------\n\nFor any set $X$, consider the poset $\\langle \\mathcal P(X), \\subseteq \\rangle$ of $X$'s powerset ordered by inclusion.\nThis poset is a complete lattice in which for all $Y \\subset \\mathcal P(X)$, $\\bigvee Y = \\bigcup Y$.\n\nTo see that $\\bigvee Y = \\bigcup Y$, first note that because union contains all of its constituent sets, for all $A \\in Y$, $A \\subseteq \\bigcup Y$. This makes $\\bigcup Y$ an upper bound of $Y$. Now suppose that $B \\in \\mathcal P(X)$ is an upper bound of $Y$; i.e., for all $A \\in Y$, $A \\subseteq B$. Let $x \\in \\bigcup Y$. Then $x \\in A$ for some $A \\in Y$. Since $A \\subseteq B$, $x \\in B$. Hence, $\\bigcup Y \\subseteq B$, and so $\\bigcup Y$ is the least upper bound of $Y$.\n\n\nThe Knaster-Tarski fixpoint theorem\n=============================\n\nSuppose that we have a poset $X$ and a [5jg monotone function] $F : X \\to X$. An element $x \\in X$ is called $F$**-consistent** if $x \\leq F(x)$ and is called $F$**-closed** if $F(x) \\leq x$. A fixpoint of $F$ is then an element of $X$ which is both $F$-consistent and $F$-closed.\n\nLet $A \\subseteq X$ be the set of all fixpoints of $F$. We are often interested in the maximum and minimum elements of $A$, if indeed it has such elements. Most often it is the minimum element of $A$, denoted $\\mu F$ and called the **least fixpoint** of $F$, that holds our interest. In the deduction system example from [5lf], the least fixpoint of the deduction system $F$ is equal to the set of all judgments which can be proven without assumptions. Knowing $\\mu F$ may be first step toward testing a judgment's membership in $\\mu F$, thus determining whether or not it is provable. In less pedestrian scenarios, we may be interested in the set of all judgments which can be proven without assumption using *possibly infinite proof trees*; in these cases, it is the **greatest fixpoint** of $F$, denoted $\\nu F$, that we are interested in.\n\nNow that we've established the notions of the least and greatest fixpoints, let's try an exercise. Namely, I'd like you to think of a lattice $L$ and a monotone function $F : L \\to L$ such that neither $\\mu F$ nor $\\nu F$ exists.\n\n%%hidden(Show solution):\nLet $L = \\langle \\mathbb R, \\leq \\rangle$ and let $F$ be the identity function $F(x) = x$. $x \\leq y \\implies F(x) = x \\leq y = F(y)$, and so $F$ is monotone. The fixpoints of $F$ are all elements of $\\mathbb R$. Because $\\mathbb R$ does not have a maximum or minimum element, neither $\\mu F$ nor $\\nu F$ exist.\n%%\n\nIf that was too easy, here is a harder exercise: think of a complete lattice $L$ and monotone function $F : L \\to L$ for which neither $\\mu F$ nor $\\nu F$ exist.\n\n%%hidden(Show solution):\nThere are none. :p\n%%\n\nIn fact, every monotone function on a complete lattice has both least and greatest fixpoints. This is a consequence of the **Knaster-Tarski fixpoint theorem**.\n\n**Theorem (The Knaster-Tarski fixpoint theorem)**: Let $L$ be a complete lattice and $F : L \\to L$ a monotone function on $L$. Then $\\mu F$ exists and is equal to $\\bigwedge \\{x \\in L \\mid F(x) \\leq x\\}$. Dually, $\\nu F$ exists and is equal to $\\bigvee \\{x \\in L \\mid x \\leq F(x) \\}$.\n\n%%hidden(Proof):\nWe know that both $\\bigwedge \\{x \\in L \\mid F(x) \\leq x\\}$ and $\\bigvee \\{x \\in L \\mid F(x) \\leq x \\}$ exist due to the closure of complete lattices under meets and joins. We therefore only need to prove that $\\bigwedge \\{x \\in L \\mid F(x) \\leq x\\}$ is a fixpoint of $F$ that is less or equal to all other fixpoints of $F$. The rest follows from duality.\n\nLet $U = \\{x \\in L \\mid F(x) \\leq x\\}$ and $y = \\bigwedge U$. We seek to show that $F(y) = y$. Let $V$ be the set of fixpoints of $F$. Clearly, $V \\subseteq U$. Because $y \\leq u$ for all $u \\in U$, $y \\leq v$ for all $v \\in V$. In other words, $y$ is less than or equal to all fixpoints of $F$.\n\nFor $u \\in U$, $y \\leq u$, and so $F(y) \\leq F(u) \\leq u$. Since $F(y)$ is a lower bound of $U$, the definition of $y$ gives $F(y) \\leq y$. Hence, $y \\in U$. Using the monotonicity of $F$ on the inequality $F(y) \\leq y$ gives $F(F(y)) \\leq F(y)$, and so $F(y) \\in U$. By the definition of $y$, we then have $y \\leq F(y)$. Since we have established $y \\leq F(y)$ and $F(y) \\leq y$, we can conclude that $F(y) = y$.\n%%\n \n\nTODO: Prove the knaster tarski theorem and explain these images\n\nadd !'s in front of the following two lines\n[A Knaster-Tarski-style view of complete latticess](http://i.imgur.com/wKq74gC.png)\n[More Knaster-Tarski-style view of complete latticess](http://i.imgur.com/AYKyxlF.png)\n\n\n\n\n\n\n\n\n\n',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: [
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0'
],
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {
Summary: 'A **complete lattice** is a [3rb poset] that is closed under arbitrary [3rc joins and meets]. A complete lattice, being closed under arbitrary joins and meets, is closed in particular under binary joins and meets. A complete lattice is thus a specific type of [46c lattice], and hence satisfies [3h4 associativity], [3jb commutativity], idempotence, and absorption of joins and meets. Complete lattices can be equivalently formulated as posets which are closed under arbitrary joins; it then follows that complete lattices are closed under arbitrary meets as well.\n\nBecause complete lattices are closed under all joins, a complete lattice $L$ must contain both $\\bigvee \\emptyset$ and $\\bigvee L$ as elements. Since $\\bigvee \\emptyset$ is a lower bound of $L$ and $\\bigvee L$ is an upper bound of $L$, complete lattices are bounded.'
},
creatorIds: [
'KevinClancy'
],
childIds: [],
parentIds: [
'order_theory'
],
commentIds: [],
questionIds: [],
tagIds: [
'work_in_progress_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [
{
id: '7120',
parentId: 'math_order_complete_lattice',
childId: 'math_order_complete_lattice',
type: 'subject',
creatorId: 'KevinClancy',
createdAt: '2017-01-01 20:44:57',
level: '3',
isStrong: 'true',
everPublished: 'true'
}
],
learnMore: [],
requirements: [
{
id: '7118',
parentId: 'poset_monotone_function',
childId: 'math_order_complete_lattice',
type: 'requirement',
creatorId: 'KevinClancy',
createdAt: '2017-01-01 20:44:33',
level: '3',
isStrong: 'false',
everPublished: 'true'
},
{
id: '7119',
parentId: 'order_lattice',
childId: 'math_order_complete_lattice',
type: 'requirement',
creatorId: 'KevinClancy',
createdAt: '2017-01-01 20:44:42',
level: '3',
isStrong: 'false',
everPublished: 'true'
},
{
id: '7121',
parentId: 'math_join',
childId: 'math_order_complete_lattice',
type: 'requirement',
creatorId: 'KevinClancy',
createdAt: '2017-01-01 20:46:53',
level: '2',
isStrong: 'false',
everPublished: 'true'
}
],
subjects: [
{
id: '7120',
parentId: 'math_order_complete_lattice',
childId: 'math_order_complete_lattice',
type: 'subject',
creatorId: 'KevinClancy',
createdAt: '2017-01-01 20:44:57',
level: '3',
isStrong: 'true',
everPublished: 'true'
}
],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21984',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '20',
type: 'newEdit',
createdAt: '2017-02-10 21:53:34',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21826',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '19',
type: 'newEdit',
createdAt: '2017-01-24 23:15:18',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21825',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '18',
type: 'newEdit',
createdAt: '2017-01-24 22:30:18',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21824',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '17',
type: 'newEdit',
createdAt: '2017-01-24 22:15:44',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21823',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '16',
type: 'newEdit',
createdAt: '2017-01-24 20:00:22',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21822',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '15',
type: 'newEdit',
createdAt: '2017-01-24 19:55:36',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21821',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '14',
type: 'newEdit',
createdAt: '2017-01-24 19:52:45',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: 'attempted to improve writing quality'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21568',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '13',
type: 'newEdit',
createdAt: '2017-01-10 02:57:42',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21565',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '12',
type: 'newEdit',
createdAt: '2017-01-10 02:56:30',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21369',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '11',
type: 'newEdit',
createdAt: '2017-01-08 22:22:54',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21368',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '10',
type: 'newEdit',
createdAt: '2017-01-08 22:21:52',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21367',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '9',
type: 'newEdit',
createdAt: '2017-01-08 22:21:04',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21366',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '8',
type: 'newEdit',
createdAt: '2017-01-08 22:16:05',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21365',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '7',
type: 'newEdit',
createdAt: '2017-01-08 22:14:36',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21364',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '6',
type: 'newEdit',
createdAt: '2017-01-08 22:09:48',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21363',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '5',
type: 'newEdit',
createdAt: '2017-01-08 22:07:14',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21362',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '4',
type: 'newEdit',
createdAt: '2017-01-08 21:57:13',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21213',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '3',
type: 'newEdit',
createdAt: '2017-01-01 20:57:19',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21212',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '0',
type: 'newRequirement',
createdAt: '2017-01-01 20:53:54',
auxPageId: 'math_join',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21211',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '2',
type: 'newEdit',
createdAt: '2017-01-01 20:53:53',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21207',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '0',
type: 'newRequirement',
createdAt: '2017-01-01 20:45:48',
auxPageId: 'poset_monotone_function',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21208',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '0',
type: 'newRequirement',
createdAt: '2017-01-01 20:45:48',
auxPageId: 'order_lattice',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21209',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '0',
type: 'newTeacher',
createdAt: '2017-01-01 20:45:48',
auxPageId: 'math_order_complete_lattice',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21210',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '0',
type: 'newSubject',
createdAt: '2017-01-01 20:45:48',
auxPageId: 'math_order_complete_lattice',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21205',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '0',
type: 'newParent',
createdAt: '2017-01-01 20:45:47',
auxPageId: 'order_theory',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21206',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '0',
type: 'newTag',
createdAt: '2017-01-01 20:45:47',
auxPageId: 'work_in_progress_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '21203',
pageId: 'math_order_complete_lattice',
userId: 'KevinClancy',
edit: '1',
type: 'newEdit',
createdAt: '2017-01-01 20:45:45',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}