{
localUrl: '../page/order_relation.html',
arbitalUrl: 'https://arbital.com/p/order_relation',
rawJsonUrl: '../raw/549.json',
likeableId: '2952',
likeableType: 'page',
myLikeValue: '0',
likeCount: '2',
dislikeCount: '0',
likeScore: '2',
individualLikes: [
'EricBruylant',
'JaimeSevillaMolina'
],
pageId: 'order_relation',
edit: '9',
editSummary: '',
prevEdit: '8',
currentEdit: '9',
wasPublished: 'true',
type: 'wiki',
title: 'Order relation',
clickbait: 'A way of determining which elements of a set come "before" or "after" other elements.',
textLength: '2768',
alias: 'order_relation',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'PatrickStevens',
editCreatedAt: '2016-07-07 16:32:44',
pageCreatorId: 'JoeZeng',
pageCreatedAt: '2016-07-05 21:17:15',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '92',
text: 'An **order relation** (also called an **order** or **ordering**) is a [3nt binary relation] $\\le$ on a [3jz set] $S$ that can be used to order the elements in that set.\n\nAn order relation satisfies the following properties:\n\n1. For all $a \\in S$, $a \\le a$. (the [reflexive_relation reflexive] property)\n2. For all $a, b \\in S$, if $a \\le b$ and $b \\le a$, then $a = b$. (the [antisymmetric_relation antisymmetric] property)\n3. For all $a, b, c \\in S$, if $a \\le b$ and $b \\le c$, then $a \\le c$. (the [transitive_relation transitive] property)\n\nA set that has an order relation is called a [3rb partially ordered set] (or "poset"), and $\\le$ is its *partial order*.\n\n## Totality of an order\n\nThere is also a fourth property that distinguishes between two different types of orders:\n\n4. For all $a, b \\in S$, either $a \\le b$ or $b \\le a$ or both. (the [total_relation total] property)\n\nThe total property implies the reflexive property, by setting $a = b$.\n\nIf the order relation satisfies the total property, then $S$ is called a [-540], and $\\le$ is its *total order*.\n\n## Well-ordering\n\nA fifth property that extends the idea of a "total order" is that of the [55r well-ordering]:\n\n5. For every subset $X$ of $S$, $X$ has a least element: an element $x$ such that for all $y \\in X$, we have $x \\leq y$.\n\nWell-orderings are very useful: they are the orderings we can perform [mathematical_induction induction] over. (For more on this viewpoint, see the page on [structural_induction].)\n\n# Derived relations\n\nThe order relation immediately affords several other relations.\n\n## Reverse order\n\nWe can define a *reverse order* $\\ge$ as follows: $a \\ge b$ when $b \\le a$. \n\n## Strict order \n\nFrom any poset $(S, \\le)$, we can derive a *strict order* $<$, which disallows equality. For $a, b \\in S$, $a < b$ when $a \\le b$ and $a \\neq b$. This strict order is still antisymmetric and transitive, but it is no longer reflexive.\n\nWe can then also define a reverse strict order $>$ as follows: $a > b$ when $b \\le a$ and $a \\neq b$.\n\n## Incomparability\n\nIn a poset that is not totally ordered, there exist elements $a$ and $b$ where the order relation is undefined. If neither $a \\leq b$ nor $b \\leq a$ then we say that $a$ and $b$ are *incomparable*, and write $a \\parallel b$. \n\n## Cover relation\n\nFrom any poset $(S, \\leq)$, we can derive an underlying *cover relation* $\\prec$, defined such that for $a, b \\in S$, $a \\prec b$ whenever the following two conditions are satisfied:\n\n1. $a < b$.\n2. For all $s \\in S$, $a \\leq s < b$ implies that $a = s$.\n\nSimply put, $a \\prec b$ means that $b$ is the smallest element of $S$ which is strictly greater than $a$.\n$a \\prec b$ is pronounced "$a$ is covered by $b$", or "$b$ covers $a$", and $b$ is said to be a *cover* of $a$.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'JoeZeng',
'PatrickStevens'
],
childIds: [],
parentIds: [
'relation_mathematics'
],
commentIds: [
'55t'
],
questionIds: [],
tagIds: [
'formal_definition_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15992',
pageId: 'order_relation',
userId: 'PatrickStevens',
edit: '9',
type: 'newEdit',
createdAt: '2016-07-07 16:32:44',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15991',
pageId: 'order_relation',
userId: 'PatrickStevens',
edit: '8',
type: 'newEdit',
createdAt: '2016-07-07 16:28:19',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15990',
pageId: 'order_relation',
userId: 'JoeZeng',
edit: '7',
type: 'newEdit',
createdAt: '2016-07-07 16:26:51',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15989',
pageId: 'order_relation',
userId: 'JoeZeng',
edit: '6',
type: 'newEdit',
createdAt: '2016-07-07 16:25:45',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '2996',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '15988',
pageId: 'order_relation',
userId: 'JoeZeng',
edit: '5',
type: 'newEdit',
createdAt: '2016-07-07 16:23:49',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15987',
pageId: 'order_relation',
userId: 'JoeZeng',
edit: '4',
type: 'newEdit',
createdAt: '2016-07-07 16:05:01',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15843',
pageId: 'order_relation',
userId: 'JoeZeng',
edit: '3',
type: 'newEdit',
createdAt: '2016-07-06 23:00:55',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15703',
pageId: 'order_relation',
userId: 'JoeZeng',
edit: '2',
type: 'newEdit',
createdAt: '2016-07-06 15:35:11',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15699',
pageId: 'order_relation',
userId: 'JoeZeng',
edit: '0',
type: 'newParent',
createdAt: '2016-07-06 15:24:37',
auxPageId: 'relation_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15440',
pageId: 'order_relation',
userId: 'JoeZeng',
edit: '0',
type: 'newTag',
createdAt: '2016-07-05 21:17:46',
auxPageId: 'formal_definition_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15438',
pageId: 'order_relation',
userId: 'JoeZeng',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-05 21:17:15',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}