{
localUrl: '../page/relation_mathematics.html',
arbitalUrl: 'https://arbital.com/p/relation_mathematics',
rawJsonUrl: '../raw/3nt.json',
likeableId: '2527',
likeableType: 'page',
myLikeValue: '0',
likeCount: '2',
dislikeCount: '0',
likeScore: '2',
individualLikes: [
'EricBruylant',
'BrettHoutz'
],
pageId: 'relation_mathematics',
edit: '11',
editSummary: '',
prevEdit: '10',
currentEdit: '11',
wasPublished: 'true',
type: 'wiki',
title: 'Relation',
clickbait: '',
textLength: '1811',
alias: 'relation_mathematics',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'DylanHendrickson',
editCreatedAt: '2016-07-07 17:11:14',
pageCreatorId: 'KevinClancy',
pageCreatedAt: '2016-05-17 00:48:51',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '1',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '63',
text: '%%comment:\nI do not want to be shortened. The motivation for this is that I would prefer that someone has the ability to learn everything they need to know about relations just by reading the popup summary.\n%%\n\n[summary: A **relation** is a [3jz set] of [tuple_mathematics tuples], all of which have the same [tuple_arity arity]. The inclusion of a tuple in a relation indicates that the components of the tuple are related. A set of $n$-tuples is called an $n$*-ary relation*. Sets of pairs are called binary relations, sets of triples are called ternary relations, etc.\n\nExamples of binary relations include the equality relation on natural numbers $\\{ (0,0), (1,1), (2,2), ... \\}$ and the predecessor relation $\\{ (0,1), (1,2), (2,3), ... \\}$. When a symbol is used to denote a specific binary relation ($R$ is commonly used for this purpose), that symbol can be used with infix notation to denote set membership: $xRy$ means that the pair $(x,y)$ is an element of the set $R$.]\n\nA **relation** is a [3jz set] of [tuple_mathematics tuples], all of which have the same [todo: generalize the function_arity page to include general arity][tuple_arity arity]. The inclusion of a tuple in a relation indicates that the components of the tuple are related. A set of $n$-tuples is called an $n$*-ary relation*. Sets of pairs are called binary relations, sets of triples are called ternary relations, etc.\n\nExamples of binary relations include the equality relation on natural numbers $\\{ (0,0), (1,1), (2,2), ... \\}$ and the predecessor relation $\\{ (0,1), (1,2), (2,3), ... \\}$. When a symbol is used to denote a specific binary relation ($R$ is commonly used for this purpose), that symbol can be used with infix notation to denote set membership: $xRy$ means that the pair $(x,y)$ is an element of the set $R$.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'true',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'KevinClancy',
'DylanHendrickson',
'NateSoares',
'JoeZeng'
],
childIds: [
'equivalence_relation',
'order_relation',
'transitive_relation',
'reflexive_relation',
'antisymmetric_relation'
],
parentIds: [
'math'
],
commentIds: [],
questionIds: [],
tagIds: [
'formal_definition_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [
{
id: '3236',
parentId: 'set_mathematics',
childId: 'relation_mathematics',
type: 'requirement',
creatorId: 'AlexeiAndreev',
createdAt: '2016-06-17 21:58:56',
level: '1',
isStrong: 'false',
everPublished: 'true'
}
],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '17850',
pageId: 'relation_mathematics',
userId: 'KevinClancy',
edit: '0',
type: 'newChild',
createdAt: '2016-07-31 17:53:22',
auxPageId: 'antisymmetric_relation',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16806',
pageId: 'relation_mathematics',
userId: 'AlexeiAndreev',
edit: '0',
type: 'newChild',
createdAt: '2016-07-15 20:17:42',
auxPageId: 'reflexive_relation',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16804',
pageId: 'relation_mathematics',
userId: 'AlexeiAndreev',
edit: '0',
type: 'deleteChild',
createdAt: '2016-07-15 20:17:23',
auxPageId: 'reflexive_relation',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16801',
pageId: 'relation_mathematics',
userId: 'EricBruylant',
edit: '0',
type: 'deleteUsedAsTag',
createdAt: '2016-07-15 20:00:17',
auxPageId: 'reflexive_relation',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16799',
pageId: 'relation_mathematics',
userId: 'EricBruylant',
edit: '0',
type: 'newChild',
createdAt: '2016-07-15 20:00:16',
auxPageId: 'reflexive_relation',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16007',
pageId: 'relation_mathematics',
userId: 'DylanHendrickson',
edit: '0',
type: 'newChild',
createdAt: '2016-07-07 17:20:32',
auxPageId: 'transitive_relation',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16002',
pageId: 'relation_mathematics',
userId: 'DylanHendrickson',
edit: '11',
type: 'newEdit',
createdAt: '2016-07-07 17:11:14',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16001',
pageId: 'relation_mathematics',
userId: 'DylanHendrickson',
edit: '10',
type: 'newEdit',
createdAt: '2016-07-07 17:10:58',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15698',
pageId: 'relation_mathematics',
userId: 'JoeZeng',
edit: '0',
type: 'newChild',
createdAt: '2016-07-06 15:24:37',
auxPageId: 'order_relation',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15482',
pageId: 'relation_mathematics',
userId: 'KevinClancy',
edit: '9',
type: 'newEdit',
createdAt: '2016-07-05 22:25:30',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15452',
pageId: 'relation_mathematics',
userId: 'EricBruylant',
edit: '0',
type: 'newChild',
createdAt: '2016-07-05 21:52:51',
auxPageId: 'equivalence_relation',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '15426',
pageId: 'relation_mathematics',
userId: 'JoeZeng',
edit: '7',
type: 'newEdit',
createdAt: '2016-07-05 20:30:02',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13766',
pageId: 'relation_mathematics',
userId: 'EricBruylant',
edit: '0',
type: 'newAlias',
createdAt: '2016-06-17 23:21:21',
auxPageId: '',
oldSettingsValue: '3nt',
newSettingsValue: 'relation_mathematics'
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13765',
pageId: 'relation_mathematics',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-06-17 23:21:14',
auxPageId: 'formal_definition_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13763',
pageId: 'relation_mathematics',
userId: 'EricBruylant',
edit: '0',
type: 'deleteTag',
createdAt: '2016-06-17 23:21:08',
auxPageId: 'definition_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10775',
pageId: 'relation_mathematics',
userId: 'KevinClancy',
edit: '6',
type: 'newRequiredBy',
createdAt: '2016-05-21 22:00:13',
auxPageId: 'poset',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10556',
pageId: 'relation_mathematics',
userId: 'NateSoares',
edit: '6',
type: 'newEdit',
createdAt: '2016-05-17 06:30:48',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10554',
pageId: 'relation_mathematics',
userId: 'KevinClancy',
edit: '5',
type: 'newEdit',
createdAt: '2016-05-17 02:33:35',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10553',
pageId: 'relation_mathematics',
userId: 'KevinClancy',
edit: '4',
type: 'newEdit',
createdAt: '2016-05-17 02:32:49',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10552',
pageId: 'relation_mathematics',
userId: 'KevinClancy',
edit: '3',
type: 'newEdit',
createdAt: '2016-05-17 02:31:35',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10551',
pageId: 'relation_mathematics',
userId: 'KevinClancy',
edit: '2',
type: 'newEdit',
createdAt: '2016-05-17 02:29:59',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10531',
pageId: 'relation_mathematics',
userId: 'KevinClancy',
edit: '1',
type: 'newEdit',
createdAt: '2016-05-17 00:48:51',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10527',
pageId: 'relation_mathematics',
userId: 'KevinClancy',
edit: '1',
type: 'newRequirement',
createdAt: '2016-05-17 00:46:42',
auxPageId: 'set_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10526',
pageId: 'relation_mathematics',
userId: 'KevinClancy',
edit: '1',
type: 'newTag',
createdAt: '2016-05-17 00:46:04',
auxPageId: 'definition_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '10525',
pageId: 'relation_mathematics',
userId: 'KevinClancy',
edit: '1',
type: 'newParent',
createdAt: '2016-05-17 00:45:58',
auxPageId: 'math',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'true',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}