{
  localUrl: '../page/quotient_by_subgroup_is_well_defined_iff_normal.html',
  arbitalUrl: 'https://arbital.com/p/quotient_by_subgroup_is_well_defined_iff_normal',
  rawJsonUrl: '../raw/4h9.json',
  likeableId: '0',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '0',
  dislikeCount: '0',
  likeScore: '0',
  individualLikes: [],
  pageId: 'quotient_by_subgroup_is_well_defined_iff_normal',
  edit: '2',
  editSummary: '',
  prevEdit: '1',
  currentEdit: '2',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Quotient by subgroup is well defined if and only if subgroup is normal',
  clickbait: '',
  textLength: '1950',
  alias: 'quotient_by_subgroup_is_well_defined_iff_normal',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'PatrickStevens',
  editCreatedAt: '2016-06-20 08:58:24',
  pageCreatorId: 'PatrickStevens',
  pageCreatedAt: '2016-06-17 10:58:44',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '45',
  text: 'Let $G$ be a [-3gd] and $N$ a [-4h6] of $G$.\nThen we may define the *quotient group* $G/N$ to be the set of [4j4 left cosets] $gN$ of $N$ in $G$, with the group operation that $gN + hN = (gh)N$.\nThis is well-defined if and only if $N$ is normal.\n\n# Proof\n\n## $N$ normal implies $G/N$ well-defined\n\nRecall that $G/N$ is well-defined if "it doesn't matter which way we represent a coset": whichever coset representatives we use, we get the same answer.\n\nSuppose $N$ is a normal subgroup of $G$.\nWe need to show that given two representatives $g_1 N = g_2 N$ of a coset, and given representatives $h_1 N = h_2 N$ of another coset, that $(g_1 h_1) N = (g_2 h_2)N$.\n\nSo given an element of $g_1 h_1 N$, we need to show it is in $g_2 h_2 N$, and vice versa.\n\nLet $g_1 h_1 n \\in g_1 h_1 N$; we need to show that $h_2^{-1} g_2^{-1} g_1 h_1 n \\in N$, or equivalently that $h_2^{-1} g_2^{-1} g_1 h_1 \\in N$.\n\nBut $g_2^{-1} g_1 \\in N$ because $g_1 N = g_2 N$; let $g_2^{-1} g_1 = m$.\nSimilarly $h_2^{-1} h_1 \\in N$ because $h_1 N = h_2 N$; let $h_2^{-1} h_1 = p$.\n\nThen we need to show that $h_2^{-1} m h_1 \\in N$, or equivalently that $p h_1^{-1} m h_1 \\in N$.\n\nSince $N$ is closed under conjugation and $m \\in N$, we must have that $h_1^{-1} m h_1 \\in N$;\nand since $p \\in N$ and $N$ is closed under multiplication, we must have $p h_1^{-1} m h_1 \\in N$ as required.\n\n## $G/N$ well-defined implies $N$ normal\n\nFix $h \\in G$, and consider $hnh^{-1} N + hN$.\nSince the quotient is well-defined, this is $(hnh^{-1}h) N$, which is $hnN$ or $hN$ (since $nN = N$, because $N$ is a subgroup of $G$ and hence is closed under the group operation).\nBut that means $hnh^{-1}N$ is the identity element of the quotient group, since when we added it to $hN$ we obtained $hN$ itself.\n\nThat is, $hnh^{-1}N = N$.\nTherefore $hnh^{-1} \\in N$.\n\nSince this reasoning works for any $h \\in G$, it follows that $N$ is closed under conjugation by elements of $G$, and hence is normal.',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: 'null',
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'false',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {},
  creatorIds: [
    'PatrickStevens'
  ],
  childIds: [],
  parentIds: [
    'normal_subgroup'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [],
  relatedIds: [],
  markIds: [],
  explanations: [],
  learnMore: [],
  requirements: [
    {
      id: '4112',
      parentId: 'normal_subgroup',
      childId: 'quotient_by_subgroup_is_well_defined_iff_normal',
      type: 'requirement',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-06-17 21:58:56',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {},
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '14091',
      pageId: 'quotient_by_subgroup_is_well_defined_iff_normal',
      userId: 'PatrickStevens',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-06-20 08:58:24',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13481',
      pageId: 'quotient_by_subgroup_is_well_defined_iff_normal',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-06-17 10:58:44',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13478',
      pageId: 'quotient_by_subgroup_is_well_defined_iff_normal',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newRequirement',
      createdAt: '2016-06-17 10:33:29',
      auxPageId: 'normal_subgroup',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '13477',
      pageId: 'quotient_by_subgroup_is_well_defined_iff_normal',
      userId: 'PatrickStevens',
      edit: '1',
      type: 'newParent',
      createdAt: '2016-06-17 10:33:25',
      auxPageId: 'normal_subgroup',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'false',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}