{
localUrl: '../page/quotient_by_subgroup_is_well_defined_iff_normal.html',
arbitalUrl: 'https://arbital.com/p/quotient_by_subgroup_is_well_defined_iff_normal',
rawJsonUrl: '../raw/4h9.json',
likeableId: '0',
likeableType: 'page',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
pageId: 'quotient_by_subgroup_is_well_defined_iff_normal',
edit: '2',
editSummary: '',
prevEdit: '1',
currentEdit: '2',
wasPublished: 'true',
type: 'wiki',
title: 'Quotient by subgroup is well defined if and only if subgroup is normal',
clickbait: '',
textLength: '1950',
alias: 'quotient_by_subgroup_is_well_defined_iff_normal',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'PatrickStevens',
editCreatedAt: '2016-06-20 08:58:24',
pageCreatorId: 'PatrickStevens',
pageCreatedAt: '2016-06-17 10:58:44',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '45',
text: 'Let $G$ be a [-3gd] and $N$ a [-4h6] of $G$.\nThen we may define the *quotient group* $G/N$ to be the set of [4j4 left cosets] $gN$ of $N$ in $G$, with the group operation that $gN + hN = (gh)N$.\nThis is well-defined if and only if $N$ is normal.\n\n# Proof\n\n## $N$ normal implies $G/N$ well-defined\n\nRecall that $G/N$ is well-defined if "it doesn't matter which way we represent a coset": whichever coset representatives we use, we get the same answer.\n\nSuppose $N$ is a normal subgroup of $G$.\nWe need to show that given two representatives $g_1 N = g_2 N$ of a coset, and given representatives $h_1 N = h_2 N$ of another coset, that $(g_1 h_1) N = (g_2 h_2)N$.\n\nSo given an element of $g_1 h_1 N$, we need to show it is in $g_2 h_2 N$, and vice versa.\n\nLet $g_1 h_1 n \\in g_1 h_1 N$; we need to show that $h_2^{-1} g_2^{-1} g_1 h_1 n \\in N$, or equivalently that $h_2^{-1} g_2^{-1} g_1 h_1 \\in N$.\n\nBut $g_2^{-1} g_1 \\in N$ because $g_1 N = g_2 N$; let $g_2^{-1} g_1 = m$.\nSimilarly $h_2^{-1} h_1 \\in N$ because $h_1 N = h_2 N$; let $h_2^{-1} h_1 = p$.\n\nThen we need to show that $h_2^{-1} m h_1 \\in N$, or equivalently that $p h_1^{-1} m h_1 \\in N$.\n\nSince $N$ is closed under conjugation and $m \\in N$, we must have that $h_1^{-1} m h_1 \\in N$;\nand since $p \\in N$ and $N$ is closed under multiplication, we must have $p h_1^{-1} m h_1 \\in N$ as required.\n\n## $G/N$ well-defined implies $N$ normal\n\nFix $h \\in G$, and consider $hnh^{-1} N + hN$.\nSince the quotient is well-defined, this is $(hnh^{-1}h) N$, which is $hnN$ or $hN$ (since $nN = N$, because $N$ is a subgroup of $G$ and hence is closed under the group operation).\nBut that means $hnh^{-1}N$ is the identity element of the quotient group, since when we added it to $hN$ we obtained $hN$ itself.\n\nThat is, $hnh^{-1}N = N$.\nTherefore $hnh^{-1} \\in N$.\n\nSince this reasoning works for any $h \\in G$, it follows that $N$ is closed under conjugation by elements of $G$, and hence is normal.',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'PatrickStevens'
],
childIds: [],
parentIds: [
'normal_subgroup'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [
{
id: '4112',
parentId: 'normal_subgroup',
childId: 'quotient_by_subgroup_is_well_defined_iff_normal',
type: 'requirement',
creatorId: 'AlexeiAndreev',
createdAt: '2016-06-17 21:58:56',
level: '1',
isStrong: 'false',
everPublished: 'true'
}
],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '14091',
pageId: 'quotient_by_subgroup_is_well_defined_iff_normal',
userId: 'PatrickStevens',
edit: '2',
type: 'newEdit',
createdAt: '2016-06-20 08:58:24',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13481',
pageId: 'quotient_by_subgroup_is_well_defined_iff_normal',
userId: 'PatrickStevens',
edit: '1',
type: 'newEdit',
createdAt: '2016-06-17 10:58:44',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13478',
pageId: 'quotient_by_subgroup_is_well_defined_iff_normal',
userId: 'PatrickStevens',
edit: '1',
type: 'newRequirement',
createdAt: '2016-06-17 10:33:29',
auxPageId: 'normal_subgroup',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '13477',
pageId: 'quotient_by_subgroup_is_well_defined_iff_normal',
userId: 'PatrickStevens',
edit: '1',
type: 'newParent',
createdAt: '2016-06-17 10:33:25',
auxPageId: 'normal_subgroup',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}