{
localUrl: '../page/real_numbers_uncountable.html',
arbitalUrl: 'https://arbital.com/p/real_numbers_uncountable',
rawJsonUrl: '../raw/6fk.json',
likeableId: '3637',
likeableType: 'page',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [
'EricBruylant'
],
pageId: 'real_numbers_uncountable',
edit: '2',
editSummary: '',
prevEdit: '1',
currentEdit: '2',
wasPublished: 'true',
type: 'wiki',
title: 'Real numbers are uncountable',
clickbait: 'The real numbers are uncountable.',
textLength: '1622',
alias: 'real_numbers_uncountable',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'EricBruylant',
editCreatedAt: '2016-10-21 11:16:58',
pageCreatorId: 'EricBruylant',
pageCreatedAt: '2016-10-21 11:05:05',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '58',
text: 'We present a variant of Cantor's diagonalization argument to prove the [4bc real numbers] are [2w0 uncountable]. This [constructive_proof constructively proves] that there exist [uncountable_set uncountable sets] %%note: Since the real numbers are an example of one.%%.\n\nWe use the decimal representation of the real numbers. An overline ( $\\bar{\\phantom{9}}$ ) is used to mean that the digit(s) under it are repeated forever. Note that $a.bcd\\cdots z\\overline{9} = a.bcd\\cdots (z+1)\\overline{0}$ (if $z < 9$; otherwise, we need to continue carrying the one); $\\sum_{i=k}^\\infty 10^{-k} \\cdot 9 = 1 \\cdot 10^{-k + 1} + \\sum_{i=k}^\\infty 10^{-k} \\cdot 0$. Furthermore, these are the only equivalences between decimal representations; there are no other real numbers with multiple representations, and these real numbers have only these two decimal representations.\n\n**Theorem** The real numbers are uncountable.\n\n**Proof** Suppose, for [46z contradiction], that the real numbers are [-6f8 countable]; suppose that $f: \\mathbb Z^+ \\twoheadrightarrow \\mathbb R$ is a surjection. Let $r_n$ denote the $n^\\text{th}$ decimal digit of $r$, so that the fractional part of $r$ is $r_1r_2r_3r_4r_5\\ldots$ Then define a real number $r'$ with $0 \\le r' < 1$ so that $r'_n$ is 5 if $(f(n))_n \\ne 5$, and 6 if $(f(n))_n = 5$. Then there can be no $n$ such that $r' = f(n)$ since $r'_n \\ne (f(n))_n$. Thus $f$ is not surjective, contradicting our assumption, and $\\mathbb R$ is uncountable. $\\square$\n\n\nNote that choosing 5 and 6 as our allowable digits for $r'$ side-steps the issue that $0.\\overline{9} = 1.\\overline{0}$. %%',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '1',
maintainerCount: '1',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: [
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0',
'0'
],
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {
Summary: 'We present a variant of Cantor's diagonalization argument to prove the [4bc real numbers] are [2w0 uncountable]. This [constructive_proof constructively proves] that there exist [uncountable_set uncountable sets] %%note: Since the real numbers are an example of one.%%.'
},
creatorIds: [
'EricBruylant'
],
childIds: [],
parentIds: [
'uncountable',
'real_number'
],
commentIds: [],
questionIds: [],
tagIds: [
'c_class_meta_tag',
'proof_meta_tag'
],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [
{
id: '6600',
parentId: 'uncountable',
childId: 'real_numbers_uncountable',
type: 'requirement',
creatorId: 'EricBruylant',
createdAt: '2016-10-21 11:03:54',
level: '2',
isStrong: 'true',
everPublished: 'true'
},
{
id: '6601',
parentId: 'real_number',
childId: 'real_numbers_uncountable',
type: 'requirement',
creatorId: 'EricBruylant',
createdAt: '2016-10-21 11:04:10',
level: '2',
isStrong: 'true',
everPublished: 'true'
}
],
subjects: [
{
id: '6605',
parentId: 'uncountable',
childId: 'real_numbers_uncountable',
type: 'subject',
creatorId: 'EricBruylant',
createdAt: '2016-10-21 11:10:35',
level: '3',
isStrong: 'false',
everPublished: 'true'
}
],
lenses: [],
lensParentId: 'uncountable',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '20219',
pageId: 'real_numbers_uncountable',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-10-21 11:17:38',
auxPageId: 'c_class_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '20218',
pageId: 'real_numbers_uncountable',
userId: 'EricBruylant',
edit: '2',
type: 'newEdit',
createdAt: '2016-10-21 11:16:58',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '20217',
pageId: 'real_numbers_uncountable',
userId: 'EricBruylant',
edit: '0',
type: 'newSubject',
createdAt: '2016-10-21 11:10:36',
auxPageId: 'uncountable',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '20214',
pageId: 'real_numbers_uncountable',
userId: 'EricBruylant',
edit: '0',
type: 'newParent',
createdAt: '2016-10-21 11:05:35',
auxPageId: 'uncountable',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '20212',
pageId: 'real_numbers_uncountable',
userId: 'EricBruylant',
edit: '0',
type: 'newParent',
createdAt: '2016-10-21 11:05:26',
auxPageId: 'real_number',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '20208',
pageId: 'real_numbers_uncountable',
userId: 'EricBruylant',
edit: '0',
type: 'newRequirement',
createdAt: '2016-10-21 11:05:07',
auxPageId: 'uncountable',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '20209',
pageId: 'real_numbers_uncountable',
userId: 'EricBruylant',
edit: '0',
type: 'newRequirement',
createdAt: '2016-10-21 11:05:07',
auxPageId: 'real_number',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '20210',
pageId: 'real_numbers_uncountable',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-10-21 11:05:07',
auxPageId: 'proof_meta_tag',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '20207',
pageId: 'real_numbers_uncountable',
userId: 'EricBruylant',
edit: '1',
type: 'newEdit',
createdAt: '2016-10-21 11:05:05',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}