{ localUrl: '../page/real_number.html', arbitalUrl: 'https://arbital.com/p/real_number', rawJsonUrl: '../raw/4bc.json', likeableId: '2685', likeableType: 'page', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], pageId: 'real_number', edit: '15', editSummary: '', prevEdit: '14', currentEdit: '15', wasPublished: 'true', type: 'wiki', title: 'Real number', clickbait: '', textLength: '3588', alias: 'real_number', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'JoeZeng', editCreatedAt: '2016-08-16 22:23:25', pageCreatorId: 'MichaelCohen', pageCreatedAt: '2016-06-14 21:50:45', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '2', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '367', text: 'A **real number** is any number that can be used to represent a physical quantity.\n\nIntuitively, real numbers are any number that can be found between two [48l integers], such as $0,$ $1,$ $-1,$ $\\frac{3}{2},$ $\\frac{-7}{2},$ [49r $\\pi,$] [e $e$], $100 \\cdot \\sqrt{2},$ and so on. The set of real numbers is written $\\mathbb R.$ You can think of $\\mathbb R$ as [4zq $\\mathbb Q$] extended to include the [54z irrational numbers] like $\\pi$ and $e$ which can be found between rational numbers but which cannot be completely written out in [-4sl].\n\n## Definitions of the real numbers\n\nThe most commonly used definitions of the real numbers are constructions as extensions of the [4zq rational numbers], which involve either [53b Cauchy sequences] or [dedekind_cut Dedekind cuts].\n\n### Cauchy sequences\n\nBroadly speaking, a Cauchy sequence is a sequence where as the sequence goes on, all the elements past that point get closer and closer together. In the real numbers, every Cauchy sequence [convergence_analysis converges] to a real number. However, in the set of rational numbers, not all Cauchy sequences converge to a rational number.\nIn the set of rationals, a Cauchy sequence which does not converge to a rational number cannot really be said to "converge" at all: the set of rationals is "missing some of the points" that would be required to make every Cauchy sequence converge.\n\nFor example, the sequence of fractions of consecutive Fibonacci numbers $1/1, 2/1, 3/2, 5/3, 8/5, \\ldots$ gets closer and closer to $\\frac{1 + \\sqrt{5}}{2}$, but cannot be said to converge to that number because it is not in the set of rational numbers.\n\nFor each of these non-convergent Cauchy sequences, we define a new irrational number to "fill in the gap", and for the Cauchy sequences that do converge, we define a real number equal to that rational number.\n\n### Dedekind cuts\n\nA Dedekind cut of a [-540] is a [-partition] of that set into two sets so that every element in the first set is [ less than] every element in the second set, and the second set has no smallest element. The latter restriction requires that the set also be a [ perfect set] (have no [isolated_point isolated points]), in the sense used in topology.\n\nIn the real numbers, such a partition will always have the first set having a greatest element, which is known as the least-upper-bound property. However, in the rational numbers, we might come across a partition where the first set does not have such an element.\n\nFor example, define a Dedekind cut $(A, B)$ of the rational numbers such that $B = \\{x \\in \\mathbb{Q} \\ | \\ x > 0 \\wedge x^2 > 2\\}$ and $A$ is the complement of $B$. In plainer language, $B$ consists of all the numbers greater than $\\sqrt{2}$, but because $\\sqrt{2}$ doesn't exist in the space of rational numbers, we can't use that to formulate our definition. Obviously every element of $A$ is less than every element of $B$, but $A$ has no greatest element either, because we can create a sequence of numbers in $A$ that gets bigger and bigger (as it approaches $\\sqrt{2}$) but never stops at a maximum value.\n\nFor each of these "strict cuts" where neither set has a "boundary element", we define a new irrational number to "fill in the gap", just like with the Cauchy sequences. For the Dedekind cuts where one of the sets does have a least or greatest element, we define a real number equal to that rational number.\n\nThis definition has the advantage that each real number is represented by a unique Dedekind cut, unlike the Cauchy sequences where multiple sequences can converge to the same number.', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '2', maintainerCount: '2', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'true', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'MichaelCohen', 'JoeZeng', 'EricBruylant', 'KevinClancy', 'EricRogstad', 'NateSoares', 'AlexeiAndreev', 'MYass', 'PatrickStevens' ], childIds: [ 'real_number_as_cauchy_sequence', 'real_number_as_dedekind_cut', 'real_numbers_uncountable' ], parentIds: [ 'math' ], commentIds: [ '4bp', '4bv', '4h5', '503', '5dd' ], questionIds: [], tagIds: [ 'start_meta_tag', 'needs_summary_meta_tag' ], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [ { id: '61', pageId: 'real_number', lensId: 'real_number_as_cauchy_sequence', lensIndex: '0', lensName: 'Cauchy sequence definition', lensSubtitle: '', createdBy: '267', createdAt: '2016-07-02 14:09:58', updatedBy: '267', updatedAt: '2016-07-02 14:10:11' }, { id: '65', pageId: 'real_number', lensId: 'real_number_as_dedekind_cut', lensIndex: '1', lensName: 'DEDEKIND CUT DEFINITION', lensSubtitle: '', createdBy: '4tg', createdAt: '2016-07-05 19:34:06', updatedBy: '4tg', updatedAt: '2016-07-05 19:34:20' } ], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '20211', pageId: 'real_number', userId: 'EricBruylant', edit: '0', type: 'newChild', createdAt: '2016-10-21 11:05:26', auxPageId: 'real_numbers_uncountable', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18768', pageId: 'real_number', userId: 'JoeZeng', edit: '15', type: 'newEdit', createdAt: '2016-08-16 22:23:25', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3352', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '18494', pageId: 'real_number', userId: 'PatrickStevens', edit: '14', type: 'newEdit', createdAt: '2016-08-06 12:40:03', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '18476', pageId: 'real_number', userId: 'MYass', edit: '13', type: 'newEdit', createdAt: '2016-08-06 03:09:51', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'Before, these sentences looked contradictory until I read the next paragraph(which indicated that they do converge, but not to a rational). That is not good.' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '17729', pageId: 'real_number', userId: 'AlexeiAndreev', edit: '12', type: 'newEdit', createdAt: '2016-07-29 18:15:02', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3090', likeableType: 'changeLog', myLikeValue: '0', likeCount: '2', dislikeCount: '0', likeScore: '2', individualLikes: [], id: '16922', pageId: 'real_number', userId: 'KevinClancy', edit: '11', type: 'newEdit', createdAt: '2016-07-16 20:17:17', auxPageId: '', oldSettingsValue: '', newSettingsValue: 'Previous edit explanation: The definition was circular because infinite summations are defined in terms of limits, and limits of rationals are defined in terms of real numbers. ' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16883', pageId: 'real_number', userId: 'KevinClancy', edit: '10', type: 'newEdit', createdAt: '2016-07-16 17:41:44', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16733', pageId: 'real_number', userId: 'AlexeiAndreev', edit: '0', type: 'newTag', createdAt: '2016-07-14 23:59:52', auxPageId: 'needs_summary_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15899', pageId: 'real_number', userId: 'JoeZeng', edit: '9', type: 'newEdit', createdAt: '2016-07-07 02:01:22', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15409', pageId: 'real_number', userId: 'JoeZeng', edit: '0', type: 'newChild', createdAt: '2016-07-05 19:34:04', auxPageId: 'real_number_as_dedekind_cut', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15234', pageId: 'real_number', userId: 'NateSoares', edit: '8', type: 'newEdit', createdAt: '2016-07-04 07:07:24', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15233', pageId: 'real_number', userId: 'NateSoares', edit: '0', type: 'newTag', createdAt: '2016-07-04 07:07:16', auxPageId: 'start_meta_tag', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15116', pageId: 'real_number', userId: 'PatrickStevens', edit: '0', type: 'deleteRequirement', createdAt: '2016-07-02 14:10:31', auxPageId: 'math3', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15114', pageId: 'real_number', userId: 'PatrickStevens', edit: '0', type: 'newRequirement', createdAt: '2016-07-02 14:10:18', auxPageId: 'math3', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '15112', pageId: 'real_number', userId: 'PatrickStevens', edit: '0', type: 'newChild', createdAt: '2016-07-02 14:09:56', auxPageId: 'real_number_as_cauchy_sequence', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '2920', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '15108', pageId: 'real_number', userId: 'JoeZeng', edit: '7', type: 'newEdit', createdAt: '2016-07-02 02:24:55', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '13453', pageId: 'real_number', userId: 'MichaelCohen', edit: '6', type: 'newEdit', createdAt: '2016-06-17 07:49:16', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12892', pageId: 'real_number', userId: 'EricRogstad', edit: '5', type: 'newEdit', createdAt: '2016-06-15 00:03:48', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12862', pageId: 'real_number', userId: 'EricBruylant', edit: '4', type: 'newParent', createdAt: '2016-06-14 22:42:59', auxPageId: 'math', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12860', pageId: 'real_number', userId: 'EricBruylant', edit: '4', type: 'newEdit', createdAt: '2016-06-14 22:42:47', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12810', pageId: 'real_number', userId: 'EricBruylant', edit: '3', type: 'newEdit', createdAt: '2016-06-14 22:15:15', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12799', pageId: 'real_number', userId: 'MichaelCohen', edit: '2', type: 'newEdit', createdAt: '2016-06-14 21:51:10', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '12797', pageId: 'real_number', userId: 'MichaelCohen', edit: '1', type: 'newEdit', createdAt: '2016-06-14 21:50:46', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'true', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }