{
localUrl: '../page/reflexive_relation.html',
arbitalUrl: 'https://arbital.com/p/reflexive_relation',
rawJsonUrl: '../raw/5dy.json',
likeableId: '3073',
likeableType: 'page',
myLikeValue: '0',
likeCount: '4',
dislikeCount: '0',
likeScore: '4',
individualLikes: [
'EricBruylant',
'KevinClancy',
'MarkChimes',
'EricRogstad'
],
pageId: 'reflexive_relation',
edit: '1',
editSummary: '',
prevEdit: '0',
currentEdit: '1',
wasPublished: 'true',
type: 'wiki',
title: 'Reflexive relation',
clickbait: '',
textLength: '1175',
alias: 'reflexive_relation',
externalUrl: '',
sortChildrenBy: 'likes',
hasVote: 'false',
voteType: '',
votesAnonymous: 'false',
editCreatorId: 'RyanHendrickson',
editCreatedAt: '2016-07-15 19:48:12',
pageCreatorId: 'RyanHendrickson',
pageCreatedAt: '2016-07-15 19:48:12',
seeDomainId: '0',
editDomainId: 'AlexeiAndreev',
submitToDomainId: '0',
isAutosave: 'false',
isSnapshot: 'false',
isLiveEdit: 'true',
isMinorEdit: 'false',
indirectTeacher: 'false',
todoCount: '0',
isEditorComment: 'false',
isApprovedComment: 'true',
isResolved: 'false',
snapshotText: '',
anchorContext: '',
anchorText: '',
anchorOffset: '0',
mergedInto: '',
isDeleted: 'false',
viewCount: '30',
text: 'A binary [3nt relation] over some set is **reflexive** when every element of that set is related to itself. (In symbols, a relation $R$ over a set $X$ is reflexive if $\\forall a \\in X, aRa$.) For example, the relation $\\leq$ defined over the real numbers is reflexive, because every number is less than or equal to itself.\n\nA relation is **anti-reflexive** when *no* element of the set over which it is defined is related to itself. $<$ is an anti-reflexive relation over the real numbers. Note that a relation doesn't have to be either reflexive or anti-reflexive; if Alice likes herself but Bob doesn't like himself, then the relation "_ likes _" over the set $\\{Alice, Bob\\}$ is neither reflexive nor anti-reflexive.\n\nThe **reflexive closure** of a relation $R$ is the union of $R$ with the [Identity_relation identity relation]; it is the smallest relation that is reflexive and that contains $R$ as a subset. For example, $\\leq$ is the reflexive closure of $<$.\n\nSome other simple properties that can be possessed by binary relations are [Symmetric_relation symmetry] and [573 transitivity].\n\nA reflexive relation that is also transitive is called a [Preorder preorder].',
metaText: '',
isTextLoaded: 'true',
isSubscribedToDiscussion: 'false',
isSubscribedToUser: 'false',
isSubscribedAsMaintainer: 'false',
discussionSubscriberCount: '3',
maintainerCount: '3',
userSubscriberCount: '0',
lastVisit: '',
hasDraft: 'false',
votes: [],
voteSummary: 'null',
muVoteSummary: '0',
voteScaling: '0',
currentUserVote: '-2',
voteCount: '0',
lockedVoteType: '',
maxEditEver: '0',
redLinkCount: '0',
lockedBy: '',
lockedUntil: '',
nextPageId: '',
prevPageId: '',
usedAsMastery: 'false',
proposalEditNum: '0',
permissions: {
edit: {
has: 'false',
reason: 'You don't have domain permission to edit this page'
},
proposeEdit: {
has: 'true',
reason: ''
},
delete: {
has: 'false',
reason: 'You don't have domain permission to delete this page'
},
comment: {
has: 'false',
reason: 'You can't comment in this domain because you are not a member'
},
proposeComment: {
has: 'true',
reason: ''
}
},
summaries: {},
creatorIds: [
'RyanHendrickson'
],
childIds: [],
parentIds: [
'relation_mathematics'
],
commentIds: [],
questionIds: [],
tagIds: [],
relatedIds: [],
markIds: [],
explanations: [],
learnMore: [],
requirements: [],
subjects: [],
lenses: [],
lensParentId: '',
pathPages: [],
learnMoreTaughtMap: {},
learnMoreCoveredMap: {},
learnMoreRequiredMap: {},
editHistory: {},
domainSubmissions: {},
answers: [],
answerCount: '0',
commentCount: '0',
newCommentCount: '0',
linkedMarkCount: '0',
changeLogs: [
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16807',
pageId: 'reflexive_relation',
userId: 'AlexeiAndreev',
edit: '0',
type: 'newParent',
createdAt: '2016-07-15 20:17:42',
auxPageId: 'relation_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16805',
pageId: 'reflexive_relation',
userId: 'AlexeiAndreev',
edit: '0',
type: 'deleteParent',
createdAt: '2016-07-15 20:17:23',
auxPageId: 'relation_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16802',
pageId: 'reflexive_relation',
userId: 'EricBruylant',
edit: '0',
type: 'deleteTag',
createdAt: '2016-07-15 20:00:17',
auxPageId: 'relation_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3076',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '16800',
pageId: 'reflexive_relation',
userId: 'EricBruylant',
edit: '0',
type: 'newParent',
createdAt: '2016-07-15 20:00:16',
auxPageId: 'relation_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '0',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '0',
dislikeCount: '0',
likeScore: '0',
individualLikes: [],
id: '16798',
pageId: 'reflexive_relation',
userId: 'EricBruylant',
edit: '0',
type: 'newTag',
createdAt: '2016-07-15 19:59:23',
auxPageId: 'relation_mathematics',
oldSettingsValue: '',
newSettingsValue: ''
},
{
likeableId: '3074',
likeableType: 'changeLog',
myLikeValue: '0',
likeCount: '1',
dislikeCount: '0',
likeScore: '1',
individualLikes: [],
id: '16797',
pageId: 'reflexive_relation',
userId: 'RyanHendrickson',
edit: '1',
type: 'newEdit',
createdAt: '2016-07-15 19:48:12',
auxPageId: '',
oldSettingsValue: '',
newSettingsValue: ''
}
],
feedSubmissions: [],
searchStrings: {},
hasChildren: 'false',
hasParents: 'true',
redAliases: {},
improvementTagIds: [],
nonMetaTagIds: [],
todos: [],
slowDownMap: 'null',
speedUpMap: 'null',
arcPageIds: 'null',
contentRequests: {}
}