{ localUrl: '../page/reflexive_relation.html', arbitalUrl: 'https://arbital.com/p/reflexive_relation', rawJsonUrl: '../raw/5dy.json', likeableId: '3073', likeableType: 'page', myLikeValue: '0', likeCount: '4', dislikeCount: '0', likeScore: '4', individualLikes: [ 'EricBruylant', 'KevinClancy', 'MarkChimes', 'EricRogstad' ], pageId: 'reflexive_relation', edit: '1', editSummary: '', prevEdit: '0', currentEdit: '1', wasPublished: 'true', type: 'wiki', title: 'Reflexive relation', clickbait: '', textLength: '1175', alias: 'reflexive_relation', externalUrl: '', sortChildrenBy: 'likes', hasVote: 'false', voteType: '', votesAnonymous: 'false', editCreatorId: 'RyanHendrickson', editCreatedAt: '2016-07-15 19:48:12', pageCreatorId: 'RyanHendrickson', pageCreatedAt: '2016-07-15 19:48:12', seeDomainId: '0', editDomainId: 'AlexeiAndreev', submitToDomainId: '0', isAutosave: 'false', isSnapshot: 'false', isLiveEdit: 'true', isMinorEdit: 'false', indirectTeacher: 'false', todoCount: '0', isEditorComment: 'false', isApprovedComment: 'true', isResolved: 'false', snapshotText: '', anchorContext: '', anchorText: '', anchorOffset: '0', mergedInto: '', isDeleted: 'false', viewCount: '30', text: 'A binary [3nt relation] over some set is **reflexive** when every element of that set is related to itself. (In symbols, a relation $R$ over a set $X$ is reflexive if $\\forall a \\in X, aRa$.) For example, the relation $\\leq$ defined over the real numbers is reflexive, because every number is less than or equal to itself.\n\nA relation is **anti-reflexive** when *no* element of the set over which it is defined is related to itself. $<$ is an anti-reflexive relation over the real numbers. Note that a relation doesn't have to be either reflexive or anti-reflexive; if Alice likes herself but Bob doesn't like himself, then the relation "_ likes _" over the set $\\{Alice, Bob\\}$ is neither reflexive nor anti-reflexive.\n\nThe **reflexive closure** of a relation $R$ is the union of $R$ with the [Identity_relation identity relation]; it is the smallest relation that is reflexive and that contains $R$ as a subset. For example, $\\leq$ is the reflexive closure of $<$.\n\nSome other simple properties that can be possessed by binary relations are [Symmetric_relation symmetry] and [573 transitivity].\n\nA reflexive relation that is also transitive is called a [Preorder preorder].', metaText: '', isTextLoaded: 'true', isSubscribedToDiscussion: 'false', isSubscribedToUser: 'false', isSubscribedAsMaintainer: 'false', discussionSubscriberCount: '3', maintainerCount: '3', userSubscriberCount: '0', lastVisit: '', hasDraft: 'false', votes: [], voteSummary: 'null', muVoteSummary: '0', voteScaling: '0', currentUserVote: '-2', voteCount: '0', lockedVoteType: '', maxEditEver: '0', redLinkCount: '0', lockedBy: '', lockedUntil: '', nextPageId: '', prevPageId: '', usedAsMastery: 'false', proposalEditNum: '0', permissions: { edit: { has: 'false', reason: 'You don't have domain permission to edit this page' }, proposeEdit: { has: 'true', reason: '' }, delete: { has: 'false', reason: 'You don't have domain permission to delete this page' }, comment: { has: 'false', reason: 'You can't comment in this domain because you are not a member' }, proposeComment: { has: 'true', reason: '' } }, summaries: {}, creatorIds: [ 'RyanHendrickson' ], childIds: [], parentIds: [ 'relation_mathematics' ], commentIds: [], questionIds: [], tagIds: [], relatedIds: [], markIds: [], explanations: [], learnMore: [], requirements: [], subjects: [], lenses: [], lensParentId: '', pathPages: [], learnMoreTaughtMap: {}, learnMoreCoveredMap: {}, learnMoreRequiredMap: {}, editHistory: {}, domainSubmissions: {}, answers: [], answerCount: '0', commentCount: '0', newCommentCount: '0', linkedMarkCount: '0', changeLogs: [ { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16807', pageId: 'reflexive_relation', userId: 'AlexeiAndreev', edit: '0', type: 'newParent', createdAt: '2016-07-15 20:17:42', auxPageId: 'relation_mathematics', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16805', pageId: 'reflexive_relation', userId: 'AlexeiAndreev', edit: '0', type: 'deleteParent', createdAt: '2016-07-15 20:17:23', auxPageId: 'relation_mathematics', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16802', pageId: 'reflexive_relation', userId: 'EricBruylant', edit: '0', type: 'deleteTag', createdAt: '2016-07-15 20:00:17', auxPageId: 'relation_mathematics', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3076', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '16800', pageId: 'reflexive_relation', userId: 'EricBruylant', edit: '0', type: 'newParent', createdAt: '2016-07-15 20:00:16', auxPageId: 'relation_mathematics', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '0', likeableType: 'changeLog', myLikeValue: '0', likeCount: '0', dislikeCount: '0', likeScore: '0', individualLikes: [], id: '16798', pageId: 'reflexive_relation', userId: 'EricBruylant', edit: '0', type: 'newTag', createdAt: '2016-07-15 19:59:23', auxPageId: 'relation_mathematics', oldSettingsValue: '', newSettingsValue: '' }, { likeableId: '3074', likeableType: 'changeLog', myLikeValue: '0', likeCount: '1', dislikeCount: '0', likeScore: '1', individualLikes: [], id: '16797', pageId: 'reflexive_relation', userId: 'RyanHendrickson', edit: '1', type: 'newEdit', createdAt: '2016-07-15 19:48:12', auxPageId: '', oldSettingsValue: '', newSettingsValue: '' } ], feedSubmissions: [], searchStrings: {}, hasChildren: 'false', hasParents: 'true', redAliases: {}, improvementTagIds: [], nonMetaTagIds: [], todos: [], slowDownMap: 'null', speedUpMap: 'null', arcPageIds: 'null', contentRequests: {} }