{
  localUrl: '../page/bayesian_likelihood.html',
  arbitalUrl: 'https://arbital.com/p/bayesian_likelihood',
  rawJsonUrl: '../raw/56v.json',
  likeableId: '2991',
  likeableType: 'page',
  myLikeValue: '0',
  likeCount: '3',
  dislikeCount: '0',
  likeScore: '3',
  individualLikes: [
    'EricBruylant',
    'NateSoares',
    'SzymonWilczyski'
  ],
  pageId: 'bayesian_likelihood',
  edit: '4',
  editSummary: '',
  prevEdit: '3',
  currentEdit: '4',
  wasPublished: 'true',
  type: 'wiki',
  title: 'Likelihood',
  clickbait: '',
  textLength: '3425',
  alias: 'bayesian_likelihood',
  externalUrl: '',
  sortChildrenBy: 'likes',
  hasVote: 'false',
  voteType: '',
  votesAnonymous: 'false',
  editCreatorId: 'EliezerYudkowsky',
  editCreatedAt: '2016-10-08 01:58:35',
  pageCreatorId: 'NateSoares',
  pageCreatedAt: '2016-07-07 05:40:04',
  seeDomainId: '0',
  editDomainId: 'AlexeiAndreev',
  submitToDomainId: '0',
  isAutosave: 'false',
  isSnapshot: 'false',
  isLiveEdit: 'true',
  isMinorEdit: 'false',
  indirectTeacher: 'false',
  todoCount: '0',
  isEditorComment: 'false',
  isApprovedComment: 'true',
  isResolved: 'false',
  snapshotText: '',
  anchorContext: '',
  anchorText: '',
  anchorOffset: '0',
  mergedInto: '',
  isDeleted: 'false',
  viewCount: '136',
  text: '[summary:  "Likelihood", when speaking of Bayesian reasoning, denotes *the probability of an observation, supposing some hypothesis to be correct.*\n\nSuppose our piece of evidence $e$ is that "Mr. Boddy was shot."  One of our suspects is Miss Scarlett, and we denote by $H_S$ the hypothesis that Miss Scarlett shot Mr. Boddy.  Suppose that if Miss Scarlett *were* the killer, we'd have predicted in advance a 20% probability she would use a gun, and an 80% chance she'd use some other weapon.\n\nThen the *likelihood* from the evidence, to Miss Scarlett being the killer, is 0.20.  Using [1rj conditional probability notation], $\\mathbb P(e \\mid H_S) = 0.20.$\n\nThis doesn't mean Miss Scarlett has a 20% chance of being the killer; it means that if she is the killer, our observation had a probability of 20%.\n\nRelative likelihoods are a key ingredient for [1ly Bayesian reasoning] and one of the quantities plugged into [1lz Bayes's Rule].]\n\nConsider a piece of evidence $e,$ such as "Mr. Boddy was shot." We might have a number of different hypotheses that explain this evidence, including $H_S$ = "Miss Scarlett killed him", $H_M$ = "Colonel Mustard killed him", and so on.\n\nEach of those hypotheses assigns a different probability to the evidence. For example, imagine that _if_ Miss Scarlett _were_ the killer, there's a 20% chance she would use a gun, and an 80% chance she'd use some other weapon. In this case, the "Miss Scarlett" hypothesis assigns a *likelihood* of 20% to $e.$\n\nWhen reasoning about different hypotheses using a [-probability_distribution probability distribution] $\\mathbb P$, the likelihood of evidence $e$ given hypothesis $H_i$ is often written using the [1rj conditional probability] $\\mathbb P(e \\mid H_i).$ When reporting likelihoods of many different hypotheses at once, it is common to use a [-likelihood_function,] sometimes written [51n $\\mathcal L_e(H_i)$].\n\n[1rq Relative likelihoods] measure the degree of support that a piece of evidence $e$ provides for different hypotheses. For example, let's say that if Colonel Mustard were the killer, there's a 40% chance he would use a gun. Then the absolute likelihoods of $H_S$ and $H_M$ are 20% and 40%, for _relative_ likelihoods of (1 : 2). This says that the evidence $e$ supports $H_M$ twice as much as it supports $H_S,$ and that the amount of support would have been the same if the absolute likelihoods were 2% and 4% instead.\n\nAccording to [1lz Bayes' rule], relative likelihoods are the appropriate tool for measuring the [22x strength of a given piece evidence]. Relative likelihoods are one of two key constituents of belief in [bayesian_reasoning Bayesian reasoning], the other being [1rm prior probabilities].\n\nWhile absolute likelihoods aren't necessary when updating beliefs by Bayes' rule, they are useful when checking for [227 confusion]. For example, say you have a coin and only two hypotheses about how it works: $H_{0.3}$ = "the coin is random and comes up heads 30% of the time", and $H_{0.9}$ = "the coin is random and comes up heads 90% of the time." Now let's say you toss the coin 100 times, and observe the data HTHTHTHTHTHTHTHT... (alternating heads and tails). The _relative_ likelihoods strongly favor $H_{0.3},$ because it was less wrong. However, the _absolute_ likelihood of $H_{0.3}$ will be much lower than expected, and this deficit is a hint that $H_{0.3}$ isn't right. (For more on this idea, see [227].)',
  metaText: '',
  isTextLoaded: 'true',
  isSubscribedToDiscussion: 'false',
  isSubscribedToUser: 'false',
  isSubscribedAsMaintainer: 'false',
  discussionSubscriberCount: '1',
  maintainerCount: '1',
  userSubscriberCount: '0',
  lastVisit: '',
  hasDraft: 'false',
  votes: [],
  voteSummary: [
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0',
    '0'
  ],
  muVoteSummary: '0',
  voteScaling: '0',
  currentUserVote: '-2',
  voteCount: '0',
  lockedVoteType: '',
  maxEditEver: '0',
  redLinkCount: '0',
  lockedBy: '',
  lockedUntil: '',
  nextPageId: '',
  prevPageId: '',
  usedAsMastery: 'true',
  proposalEditNum: '0',
  permissions: {
    edit: {
      has: 'false',
      reason: 'You don't have domain permission to edit this page'
    },
    proposeEdit: {
      has: 'true',
      reason: ''
    },
    delete: {
      has: 'false',
      reason: 'You don't have domain permission to delete this page'
    },
    comment: {
      has: 'false',
      reason: 'You can't comment in this domain because you are not a member'
    },
    proposeComment: {
      has: 'true',
      reason: ''
    }
  },
  summaries: {
    Summary: '"Likelihood", when speaking of Bayesian reasoning, denotes *the probability of an observation, supposing some hypothesis to be correct.*\n\nSuppose our piece of evidence $e$ is that "Mr. Boddy was shot."  One of our suspects is Miss Scarlett, and we denote by $H_S$ the hypothesis that Miss Scarlett shot Mr. Boddy.  Suppose that if Miss Scarlett *were* the killer, we'd have predicted in advance a 20% probability she would use a gun, and an 80% chance she'd use some other weapon.\n\nThen the *likelihood* from the evidence, to Miss Scarlett being the killer, is 0.20.  Using [1rj conditional probability notation], $\\mathbb P(e \\mid H_S) = 0.20.$\n\nThis doesn't mean Miss Scarlett has a 20% chance of being the killer; it means that if she is the killer, our observation had a probability of 20%.\n\nRelative likelihoods are a key ingredient for [1ly Bayesian reasoning] and one of the quantities plugged into [1lz Bayes's Rule].'
  },
  creatorIds: [
    'NateSoares',
    'EliezerYudkowsky'
  ],
  childIds: [
    'relative_likelihood',
    'likelihood_notation',
    'likelihood_function',
    'likelihood_ratio'
  ],
  parentIds: [
    'bayes_reasoning'
  ],
  commentIds: [],
  questionIds: [],
  tagIds: [
    'start_meta_tag',
    'needs_summary_meta_tag',
    'needs_clickbait_meta_tag'
  ],
  relatedIds: [],
  markIds: [],
  explanations: [
    {
      id: '5840',
      parentId: 'bayesian_likelihood',
      childId: 'bayesian_likelihood',
      type: 'subject',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-08-02 17:11:45',
      level: '1',
      isStrong: 'true',
      everPublished: 'true'
    }
  ],
  learnMore: [
    {
      id: '5844',
      parentId: 'bayesian_likelihood',
      childId: 'relative_likelihood',
      type: 'subject',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-08-02 17:12:58',
      level: '2',
      isStrong: 'false',
      everPublished: 'true'
    },
    {
      id: '5839',
      parentId: 'bayesian_likelihood',
      childId: 'likelihood_function',
      type: 'subject',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-08-02 17:10:40',
      level: '2',
      isStrong: 'false',
      everPublished: 'true'
    },
    {
      id: '5845',
      parentId: 'bayesian_likelihood',
      childId: 'likelihood_ratio',
      type: 'subject',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-08-02 17:13:21',
      level: '1',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  requirements: [
    {
      id: '5841',
      parentId: 'conditional_probability',
      childId: 'bayesian_likelihood',
      type: 'requirement',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-08-02 17:12:13',
      level: '2',
      isStrong: 'false',
      everPublished: 'true'
    },
    {
      id: '5842',
      parentId: 'probability',
      childId: 'bayesian_likelihood',
      type: 'requirement',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-08-02 17:12:26',
      level: '2',
      isStrong: 'true',
      everPublished: 'true'
    },
    {
      id: '5843',
      parentId: 'odds',
      childId: 'bayesian_likelihood',
      type: 'requirement',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-08-02 17:12:38',
      level: '2',
      isStrong: 'false',
      everPublished: 'true'
    }
  ],
  subjects: [
    {
      id: '5840',
      parentId: 'bayesian_likelihood',
      childId: 'bayesian_likelihood',
      type: 'subject',
      creatorId: 'AlexeiAndreev',
      createdAt: '2016-08-02 17:11:45',
      level: '1',
      isStrong: 'true',
      everPublished: 'true'
    }
  ],
  lenses: [],
  lensParentId: '',
  pathPages: [],
  learnMoreTaughtMap: {
    '56v': [
      '56t'
    ]
  },
  learnMoreCoveredMap: {},
  learnMoreRequiredMap: {},
  editHistory: {},
  domainSubmissions: {},
  answers: [],
  answerCount: '0',
  commentCount: '0',
  newCommentCount: '0',
  linkedMarkCount: '0',
  changeLogs: [
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '19925',
      pageId: 'bayesian_likelihood',
      userId: 'EliezerYudkowsky',
      edit: '4',
      type: 'newEdit',
      createdAt: '2016-10-08 01:58:35',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18343',
      pageId: 'bayesian_likelihood',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-08-04 14:05:21',
      auxPageId: 'needs_summary_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18342',
      pageId: 'bayesian_likelihood',
      userId: 'EricBruylant',
      edit: '0',
      type: 'deleteTag',
      createdAt: '2016-08-04 14:04:54',
      auxPageId: 'stub_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18340',
      pageId: 'bayesian_likelihood',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-08-04 14:04:53',
      auxPageId: 'start_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18128',
      pageId: 'bayesian_likelihood',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'newTeacher',
      createdAt: '2016-08-02 17:13:22',
      auxPageId: 'likelihood_ratio',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18126',
      pageId: 'bayesian_likelihood',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'newTeacher',
      createdAt: '2016-08-02 17:12:59',
      auxPageId: 'relative_likelihood',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18124',
      pageId: 'bayesian_likelihood',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-08-02 17:12:39',
      auxPageId: 'odds',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18123',
      pageId: 'bayesian_likelihood',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-08-02 17:12:26',
      auxPageId: 'probability',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18122',
      pageId: 'bayesian_likelihood',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'newRequirement',
      createdAt: '2016-08-02 17:12:13',
      auxPageId: 'conditional_probability',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18120',
      pageId: 'bayesian_likelihood',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'newTeacher',
      createdAt: '2016-08-02 17:11:45',
      auxPageId: 'bayesian_likelihood',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18121',
      pageId: 'bayesian_likelihood',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'newSubject',
      createdAt: '2016-08-02 17:11:45',
      auxPageId: 'bayesian_likelihood',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18118',
      pageId: 'bayesian_likelihood',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'newTeacher',
      createdAt: '2016-08-02 17:10:41',
      auxPageId: 'likelihood_function',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '18098',
      pageId: 'bayesian_likelihood',
      userId: 'AlexeiAndreev',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-08-02 17:05:28',
      auxPageId: 'likelihood_notation',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '16923',
      pageId: 'bayesian_likelihood',
      userId: 'EricBruylant',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-16 20:29:35',
      auxPageId: 'needs_clickbait_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15976',
      pageId: 'bayesian_likelihood',
      userId: 'NateSoares',
      edit: '3',
      type: 'newEdit',
      createdAt: '2016-07-07 14:46:35',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15973',
      pageId: 'bayesian_likelihood',
      userId: 'NateSoares',
      edit: '2',
      type: 'newEdit',
      createdAt: '2016-07-07 14:35:16',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15945',
      pageId: 'bayesian_likelihood',
      userId: 'NateSoares',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-07 06:09:24',
      auxPageId: 'likelihood_function',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15941',
      pageId: 'bayesian_likelihood',
      userId: 'NateSoares',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-07 05:51:35',
      auxPageId: 'likelihood_ratio',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15936',
      pageId: 'bayesian_likelihood',
      userId: 'NateSoares',
      edit: '0',
      type: 'newChild',
      createdAt: '2016-07-07 05:40:39',
      auxPageId: 'relative_likelihood',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15934',
      pageId: 'bayesian_likelihood',
      userId: 'NateSoares',
      edit: '0',
      type: 'newParent',
      createdAt: '2016-07-07 05:40:05',
      auxPageId: 'bayes_reasoning',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15935',
      pageId: 'bayesian_likelihood',
      userId: 'NateSoares',
      edit: '0',
      type: 'newTag',
      createdAt: '2016-07-07 05:40:05',
      auxPageId: 'stub_meta_tag',
      oldSettingsValue: '',
      newSettingsValue: ''
    },
    {
      likeableId: '0',
      likeableType: 'changeLog',
      myLikeValue: '0',
      likeCount: '0',
      dislikeCount: '0',
      likeScore: '0',
      individualLikes: [],
      id: '15932',
      pageId: 'bayesian_likelihood',
      userId: 'NateSoares',
      edit: '1',
      type: 'newEdit',
      createdAt: '2016-07-07 05:40:04',
      auxPageId: '',
      oldSettingsValue: '',
      newSettingsValue: ''
    }
  ],
  feedSubmissions: [],
  searchStrings: {},
  hasChildren: 'true',
  hasParents: 'true',
  redAliases: {},
  improvementTagIds: [],
  nonMetaTagIds: [],
  todos: [],
  slowDownMap: 'null',
  speedUpMap: 'null',
  arcPageIds: 'null',
  contentRequests: {}
}