X
f:X→⋃Y∈XY
Y∈X
Y
f
f(Y)∈Y
∀X([∀Y∈XY≠∅]⇒[∃(f:X→⋃Y∈XY)(∀Y∈X∃y∈Yf(Y)=y)])
Y1,Y2,Y3
y1∈Y1,y2∈Y2,y3∈Y3
f(Y1)=y1
f(Y2)=y2
f(Y3)=y3
Y1,Y2,Y3,…
n
ax2+bx+c=0
−∞
+∞,
0
1
P(X)+P(¬X)
¬X
ℵ0
{+,˙,0,1}
26=64
p<0.05
10betthatpaidout
8
4
log48
1.5
3
2
log23
n∈R≥1,
∈R≥0
f(xy)=yf(x)
f(bn)=nf(b)
f(b)=1⟹f(bn)=n,
(R>0,⋅)
(R,+)
log
R
s(d)=surprise(d∣H)=−logPr(d∣H)
d
H
s
(d∣H)
log-likelihood=−surprise
t(d)
t
Pr(d∣H)
Pr(H∣d)=Pr(H∣t(d))
P(e∣GoodDriver)
P(e∣BadDriver)
P(BadDriver)
ℵα+ℵα=ℵα=ℵαℵα
2ℵα>ℵα
H1,H2,…
H,
C=AB;cii=aii∗bii;∀i≠j,cij=0
Xi
xi
X0
X1
X2
X3
V
U
S
≤
X∪X−1
rr−1
r−1r
r∈X
(1:10100)
(1:106)
x
x⋅x≤n
x=316
x2≤100000.
M
N
x!
x!=Γ(x+1),
Γ
Γ(x)=∫∞0tx−1e−tdt
x∏i=1i=∫∞0txe−tdt
x=1
1∏i=1i=∫∞0t1e−tdt
1=1
x+1
x+1∏i=1i=∫∞0tx+1e−tdt
(x+1)x∏i=1i=(x+1)∫∞0txe−tdt
x+1∏i=1i=(x+1)∫∞0txe−tdt
=0+∫∞0(x+1)txe−tdt
=(−tx+1e−t)]∞0+∫∞0(x+1)txe−tdt
=(−tx+1e−t)]∞0−∫∞0(x+1)tx(−e−t)dt
=∫∞0tx+1e−tdt
(S,≤)
X.
H0.55,
H0.6
H0.8.
H0.5,
A
B
\bP
square:R→R
square(x)=x2
C
Prv(x)
2n
23,000,000,000,000
23 trillion
a
b
31a+b
31⋅30+30=960
L(H∣e)<0.05
e
L(H∣e)
n,
logb(n),
log10(100)=2,
log10(316)≈2.5,
316≈
10⋅10⋅√10,
√10
log10(2,310,426)
f(x)
1/2
Hfair,
Hheads
Htails
(1/2:1/3:1/6).
(3:2:1)
(2:1:3).
(2:3:1)
T
D
X→Y
YX
Y2
99⋅2=198
100
LDT
198
P(Xi|pai)
pai
∙
G
t=0
4.7t2
n−1
log10(x)
x;
P(n)
P(m)
k≥m
P(k)
P(k+1)
P(m+1)
P(m+2)
−1
P
P(x)
P(X=x)
1+2+⋯+n=n(n+1)2
n≥1
n=1
1=1(1+1)2=22=1.
k
k≥1
1+2+⋯+k=k(k+1)2
1+2+⋯+k+(k+1)=(k+1)([k+1]+1)2.
k+1
1+2+⋯+k+(k+1)=k(k+1)2+k+1.
k(k+1)2+2(k+1)2=(k+2)(k+1)2=(k+1)([k+1]+1)2.
1+2+⋯+k+(k+1)=(k+1)([k+1]+1)2
λ
λx.f(x)
λx.x+1
λx.λy.x+y
λxy.x+y
λxy
λx.λy
$~$x, y, z$~$